INFO BEASISWA RISET BAZNAS

admin 12 Sep 2023

TELAH DIBUKA
BEASISWA RISET
Kategori Umum & Program Studi Manajemen Zakat Wakaf

Beasiswa Riset BAZNAS adalah program beasiswa dengan memberikan bantuan dana riset tugas akhir untuk membantu mahasiswa/i di perguruan tinggi baik jenjang diploma, sarjana dan pascasarjana.

Beasiswa Riset BAZNAS memiliki dua kategori :
1. Kategori Riset Umum
2. Kategori Riset Program Studi Manajemen Zakat & Wakaf

💡 FASILITAS BEASISWA
1. Pembinaan Rutin Bulanan
2. Forum Pemaparan Hasil Riset
3. Biaya Penelitian dengan nominal berikut :
• Diploma sebesar Rp4.000.000,-
• S1 sebesar Rp4.000.000,-
• S2 sebesar Rp7.000.000,-
• S3 sebesar Rp10.000.000,-

📚 TATA CARA PENDAFTARAN

LANGKAH 1
Pendaftar mengunduh (download) panduan dan melengkapi formulir pendaftaran sesuai format berkas persyaratan yang dapat diunduh melalui link berikut :
bit.ly/PanduanBeasiswaRiset

LANGKAH 2
Peserta mendaftarkan diri dan mengunggah (upload) berkas pendaftaran melalui link berikut :
https://bit.ly/PendaftaranBeasiswaRisetBAZNAS

Pendaftaran dibuka:
30 Agustus s.d 10 September 2023
pukul 23.59 WIB

Yuk kolaborasi untuk untuk membangun anak negeri.

#BerkahBerzakat
#GerakanCintaZakat
#BAZNASINDONESIA
#BeasiswaRisetBAZNAS
#PilihanPertamaPembayarZakat
#LembagaUtamaMenyejahterakanUmat

Anda Mungkin Suka

Biblioshiny R vs VOSviewer: Memahami Literatur Akademis dengan Lebih Interaktif

Dalam dunia penelitian, pemahaman dan analisis terhadap literatur akademis menjadi kunci untuk menghasilkan temuan yang berharga dan terkini. Dua alat yang sering digunakan dalam mengelola dan menganalisis literatur adalah Biblioshiny R dan VOSviewer. Kedua alat ini memiliki keunggulan masing-masing dalam membantu peneliti memahami dan menyajikan informasi literatur dengan cara yang lebih interaktif. Mari kita bandingkan keduanya untuk melihat bagaimana mereka dapat meningkatkan produktivitas penelitian Anda.

Biblioshiny R: Manajemen Literatur yang Efisien dan Visualisasi Data Interaktif
Biblioshiny R adalah aplikasi berbasis web yang memungkinkan pengguna untuk mengelola, menelusuri, dan berbagi koleksi literatur mereka dengan mudah. Salah satu keunggulan utamanya adalah kemampuannya untuk menyajikan data literatur dengan visualisasi yang interaktif. Pengguna dapat melihat statistik tentang koleksi literatur mereka, seperti distribusi tahun publikasi, jenis publikasi, atau frekuensi penulis tertentu, dalam bentuk grafik yang menarik dan mudah dipahami.

VOSviewer: Visualisasi Jaringan Literatur yang Kuat dan Analisis Citasi yang Mendalam
VOSviewer adalah alat yang khusus digunakan untuk visualisasi jaringan literatur dan analisis citasi. Salah satu keunggulan utamanya adalah kemampuannya untuk menganalisis dan mengekstrak pola-pola penting dari jaringan literatur, seperti kluster topik dan hubungan antara kata kunci. Dengan menggunakan VOSviewer, pengguna dapat dengan mudah menjelajahi struktur dan tren dalam literatur akademis mereka secara mendalam.

Perbandingan:
Kedua alat ini memiliki keunggulan yang unik dalam membantu peneliti memahami literatur akademis. Biblioshiny R menonjol dalam hal manajemen literatur yang efisien dan visualisasi data interaktif, sementara VOSviewer dikenal karena kemampuannya dalam visualisasi jaringan literatur dan analisis citasi yang mendalam. Pilihan tergantung pada kebutuhan spesifik penelitian dan preferensi pengguna. Jika Anda lebih tertarik pada visualisasi data yang interaktif dan statistik koleksi literatur, Biblioshiny R mungkin menjadi pilihan yang lebih baik. Namun, jika Anda lebih fokus pada analisis jaringan literatur dan hubungan citasi antar artikel, maka VOSviewer adalah pilihan yang lebih cocok.

Kesimpulan:
Dalam dunia penelitian yang semakin kompleks dan dinamis, alat-alat seperti Biblioshiny R dan VOSviewer memberikan bantuan berharga bagi peneliti dalam memahami dan menganalisis literatur akademis. Dengan memanfaatkan keunggulan masing-masing alat, peneliti dapat meningkatkan produktivitas dan keseluruhan kualitas penelitian mereka, membawa kita satu langkah lebih dekat menuju terobosan ilmiah yang lebih besar.

Kunjungan ke Forum Pesantren Palembang, Direktur LPPM diajak sharing ke 2 ponpes dengan tema "Young Muslimpreneur: Membangun Negeri dengan Islamic Startup"

Rabu-Kamis, 02-03 Agustus 2023 telah dilaksanakan kegiatan sharing session oleh direktur LPPM Dr. Hendrasto M.Si., CPC dengan tema  "Young Muslimpreneur: Membangun Negeri dengan Islamic Startup" di Pondok pesantren Nurul Huda Sukawinatan dan Pondok pesantren Al Khoir Palembani.

Kegiatan Sharing Session ini bertujuan untuk menciptakan pengusaha Muslim muda yang tangguh dan sesuai Syariah, Menciptakan pekerjaan baru dan mengurangi pengangguran, Mengambil peran untuk kebangkitan ekonomi umat. Muslimpreneur merupakan konsep berwirausaha halalan thayyiban, karena nilai yang dianutnya adalah perilaku jujur dan amanah sehingga dinilai cocok bagi generasi muda khususnya kalangan santri ataupun mahasiswa.

4th Call for Proposal: STEG Larger Research Grants

Batas pengajuan proposal Penelitian jatuh pada 19 September 2023, 23:59 BST.

Pengajuan dilakukan melalui https://steg.cepr.org/funding/larger-research-grants-lrgs dengan mengisi template yang berlaku. Untuk proposal yang berkaitan dengan tema Y-RISE, peneliti dapat menggunakan Y-RISE pada bagian kata kunci yang ada pada form pengajuan. Persyaratan ketua peneliti dan sebagainya dapat dicek pada laman berikut:

Persyatan: https://steg.cepr.org/larger-research-grants-lrgs

Kriteria Negara Pengusul: https://steg.cepr.org/larger-research-grants-lrgs

Cara Pengajuan: https://steg.cepr.org/funding/how-apply-online

Persiapan proposal: https://steg.cepr.org/funding/larger-research-grants-lrgs/how-apply-lrg

Surat Pengumuman: STEG LRG 4 Call Text

Panduan Pengusulan: STEG LRG Applicant Guide_2

 

More info: https://research.binus.ac.id/2023/09/4th-call-for-proposal-steg-larger-research-grants/

Automatic Evaluation System: Apa saja elemen inovatifnya?

Inovasi dalam Sistem Penilaian Otomatis (Automatic Evaluation System) melibatkan penerapan teknologi canggih, terutama kecerdasan buatan (AI), untuk meningkatkan kecepatan, efisiensi, dan akurasi dalam mengevaluasi artikel jurnal. Berikut adalah beberapa elemen inovatif dalam pengembangan sistem penilaian otomatis:

 

>Penggunaan Kecerdasan Buatan (AI): Implementasi teknologi kecerdasan buatan memungkinkan sistem untuk belajar dari pola penilaian sejawat yang telah ada, memahami konteks dan kompleksitas bahasa ilmiah, serta memberikan penilaian yang lebih mendalam.

>Analisis Konteks dan Keterkaitan: Sistem dapat mengevaluasi artikel dengan memahami konteksnya, termasuk relevansi topik, urgensi penelitian, dan kontribusi terhadap literatur ilmiah yang sudah ada.

>Penilaian Multi-Aspek: Sistem dapat diprogram untuk menilai artikel melalui berbagai aspek, seperti metodologi penelitian, kejelasan presentasi, kontribusi unik, dan interpretasi data, memberikan penilaian yang lebih holistik.

>Pelabelan Otomatis dan Analisis Sentimen: Penggunaan teknologi pemrosesan bahasa alami (NLP) dan analisis sentimen memungkinkan sistem untuk menilai tingkat kejelasan, kohesi, dan sentimen umum dalam tulisan, membantu dalam mengevaluasi kualitas bahasa dan penyampaian pesan.

>Integrasi dengan Basis Data Ilmiah: Sistem dapat terhubung dengan basis data ilmiah besar untuk memeriksa keaslian dan orisinalitas artikel, mengidentifikasi potensi plagiarisme, dan memastikan bahwa kontribusi penelitian benar-benar baru.

>Adaptabilitas terhadap Bidang Penelitian: Sistem dapat disesuaikan dengan kebutuhan dan norma penilaian yang berlaku dalam berbagai bidang penelitian, memastikan keakuratan dan relevansi penilaian.

>Penggunaan Algoritma Pencocokan Penilai: Algoritma dapat digunakan untuk mencocokkan artikel dengan penilai yang memiliki keahlian khusus yang sesuai, meningkatkan akurasi penilaian dan memberikan umpan balik yang lebih bermakna.

>Analisis Kualitas Statistik dan Metodologi: Sistem dapat menganalisis metode penelitian dan statistik yang digunakan, mengidentifikasi kelemahan metodologi dan memberikan rekomendasi untuk perbaikan.

>Pemahaman Kontribusi Terhadap Literatur Ilmiah: Sistem dapat mengevaluasi bagaimana artikel berkontribusi terhadap literatur ilmiah yang sudah ada, membantu membedakan antara penelitian yang bersifat inkremental dan yang bersifat revolusioner.

>Ketersediaan Umpan Balik Otomatis: Sistem dapat memberikan umpan balik otomatis kepada penulis, memberikan informasi yang lebih rinci mengenai kelebihan dan kekurangan artikel serta saran perbaikan.

 

Dengan menggabungkan teknologi ini, sistem penilaian otomatis dapat mengoptimalkan proses penelaahan sejawat dengan memberikan hasil yang cepat, akurat, dan dapat diandalkan, mendukung kemajuan ilmu pengetahuan dan penyuntingan jurnal.