• Home
  • Berita
  • CIMA Research Grants – Topic Specific Regional Calls

CIMA Research Grants – Topic Specific Regional Calls

admin 14 Sep 2023

Please read the guidance notes before completing the application form.

If you need any assistance in completing this form, please contact CIMA research staff at [email protected]. Completed applications should be emailed to this address before the call closing date.

 

More info: https://www.aicpa-cima.com/resources/download/application-for-cima-research-grant-experienced-researchers

Anda Mungkin Suka

Apa Saja Metodologi Dalam Penelitian Kualitatif?

Metodologi penelitian kualitatif melibatkan serangkaian langkah dan pendekatan yang digunakan untuk mengumpulkan, menganalisis, dan menginterpretasi data kualitatif. Berikut adalah beberapa metodologi yang sering digunakan dalam penelitian kualitatif:

 

1. Penelitian Lapangan (Field Research): Penelitian lapangan melibatkan pengamatan langsung dan interaksi dengan subjek penelitian dalam lingkungan alami mereka. Metode ini dapat mencakup observasi partisipatif, wawancara mendalam, dan pencatatan catatan lapangan.

2. Wawancara Kualitatif: Wawancara kualitatif melibatkan percakapan mendalam antara peneliti dan subjek penelitian. Wawancara ini sering kali bersifat terstruktur, semi-terstruktur, atau tak terstruktur, tergantung pada tujuan penelitian.

3. Pengamatan: Metode pengamatan melibatkan pemantauan langsung terhadap perilaku, interaksi, atau situasi tertentu tanpa intervensi langsung. Ini dapat mencakup pengamatan partisipatif atau pengamatan non-partisipatif.

4. Analisis Dokumen: Penelitian kualitatif juga dapat melibatkan analisis dokumen seperti teks, laporan, jurnal, surat, dan materi tertulis lainnya. Peneliti menganalisis dokumen-dokumen ini untuk memahami isinya dan mengidentifikasi pola atau temuan kualitatif.

5. Pendekatan Studi Kasus: Metode studi kasus digunakan untuk memahami konteks yang mendalam dari satu kasus atau beberapa kasus terbatas. Ini sering digunakan untuk menginvestigasi fenomena yang kompleks dan unik.

6. Analisis Konten: Analisis konten adalah pendekatan sistematis untuk menganalisis isi teks, gambar, atau materi media lainnya. Peneliti mencari pola, tema, dan makna dalam data yang dikumpulkan.

7. Grounded Theory: Pendekatan teori terkait (grounded theory) bertujuan untuk mengembangkan teori yang muncul secara induktif dari data yang dikumpulkan. Ini sering digunakan untuk menggali makna dalam data kualitatif.

8. Pendekatan Etnografi: Etnografi melibatkan penelitian yang mendalam dan panjang di dalam komunitas atau kelompok tertentu. Peneliti menjadi bagian dari komunitas tersebut untuk memahami budaya, norma, dan nilai-nilai yang ada.

9. Pendekatan Fenomenologi: Pendekatan fenomenologi berfokus pada pemahaman mendalam tentang pengalaman subjek. Peneliti mencari makna yang terkandung dalam pengalaman individu atau kelompok.

10. Metode Triangulasi: Metode ini melibatkan penggunaan beberapa metode kualitatif dalam satu penelitian untuk memastikan keandalan dan validitas temuan.

 

Metodologi penelitian kualitatif dipilih berdasarkan pertanyaan penelitian, tujuan penelitian, dan jenis data yang akan dikumpulkan. Kombinasi berbagai metode kualitatif sering kali digunakan untuk memperoleh pemahaman yang lebih mendalam tentang fenomena yang diteliti.

LANGKAH UTAMA DALAM METODOLOGI ANALISIS SURVEI LONGITUDINAL PADA PENELITIAN KUANTITATIF

Analisis Survei Longitudinal adalah salah satu metode dalam metodologi kuantitatif yang digunakan untuk memahami perubahan atau perkembangan suatu fenomena atau variabel dari waktu ke waktu dalam sampel yang sama. Berikut ini adalah langkah-langkah utama dalam metodologi Analisis Survei Longitudinal:

 

Penentuan Tujuan Penelitian: Tentukan secara jelas tujuan penelitian Anda yang berkaitan dengan perubahan atau perkembangan variabel dari waktu ke waktu. Apa yang ingin Anda pelajari dari data survei longitudinal ini?

 

Pemilihan Dataset Longitudinal: Identifikasi dan peroleh dataset longitudinal yang sesuai dengan pertanyaan penelitian Anda. Pastikan dataset tersebut mencakup pengukuran yang dilakukan pada waktu yang berbeda untuk subjek yang sama.

 

Eksplorasi Data Awal: Lakukan eksplorasi data awal untuk memahami struktur data dan distribusi variabel di berbagai titik waktu. Ini termasuk memeriksa nilai yang hilang, outliers, dan tren yang mungkin muncul dari waktu ke waktu.

 

Persiapan Data: Bersihkan dan persiapkan data, termasuk penanganan nilai yang hilang, pemilihan variabel yang relevan, dan pengkodean ulang jika diperlukan.

 

Analisis Deskriptif: Lakukan analisis deskriptif untuk memahami karakteristik data di setiap titik waktu. Ini bisa melibatkan perhitungan statistik deskriptif seperti rata-rata, deviasi standar, dan distribusi frekuensi.

 

Model Analisis Longitudinal: Pilih model analisis longitudinal yang sesuai untuk pertanyaan penelitian Anda. Ini bisa termasuk model regresi longitudinal, analisis varians longitudinal, atau model-mdoel lain yang cocok dengan data Anda.

 

Estimasi Parameter: Gunakan model yang Anda pilih untuk mengestimasi parameter-parameter yang relevan, seperti koefisien regresi longitudinal atau efek waktu.

 

Uji Hipotesis: Lakukan uji hipotesis untuk menguji apakah perubahan dari waktu ke waktu signifikan secara statistik. Ini melibatkan penggunaan uji statistik yang sesuai dengan model Anda.

 

Interpretasi Hasil: Interpretasikan hasil analisis longitudinal Anda. Jelaskan apakah ada perubahan yang signifikan dari waktu ke waktu dan bagaimana hal ini berkaitan dengan tujuan penelitian Anda.

 

Simpulkan Penelitian Anda: Buat kesimpulan tentang apa yang telah Anda pelajari dari analisis survei longitudinal ini. Sertakan implikasi hasil Anda dalam konteks penelitian Anda.

 

Laporan Penelitian: Sajikan hasil analisis survei longitudinal Anda dalam laporan penelitian yang sistematis. Sertakan grafik, tabel, dan interpretasi yang mendukung temuan Anda.

 

Diskusi dan Kesimpulan Akhir: Diskusikan keterbatasan-keterbatasan analisis longitudinal Anda dan saran untuk penelitian lanjutan. Buat kesimpulan akhir yang merangkum temuan Anda.

 

Metodologi Analisis Survei Longitudinal memungkinkan Anda untuk memahami perubahan dan perkembangan fenomena atau variabel dari waktu ke waktu dengan menggunakan data survei yang sama. Pastikan Anda mengikuti prosedur analisis yang tepat dan memperhatikan asumsi-asumsi yang relevan dengan model analisis longitudinal yang Anda pilih.

Keamanan Data Kominfo di Ujung Tanduk: Peran Vital Peneliti dan Akademisi

Baru-baru ini, Indonesia diguncang oleh kasus kebocoran data yang melibatkan Kementerian Komunikasi dan Informatika (Kominfo). Kasus ini menimbulkan kekhawatiran yang serius tentang privasi dan keamanan data pribadi warga negara. Krisis ini menyoroti kelemahan dalam sistem perlindungan data pemerintah dan menuntut tindakan nyata dari berbagai pihak, termasuk peneliti dan akademisi. Artikel ini akan membahas krisis kebocoran data pada Kominfo dan langkah-langkah yang perlu diambil oleh peneliti dan akademisi untuk mengatasi masalah ini.

Latar Belakang Kebocoran Data pada Kominfo

Kebocoran data yang melibatkan Kominfo mencakup sejumlah besar informasi pribadi yang sensitif. Data yang bocor termasuk nama lengkap, nomor paspor, tanggal lahir, dan informasi lainnya yang dapat digunakan untuk mencuri identitas seseorang. Kebocoran ini diduga terjadi karena kelemahan dalam sistem keamanan yang digunakan oleh Kominfo atau pihak ketiga yang mengelola data tersebut.

Sumber kebocoran bisa bermacam-macam, mulai dari serangan siber oleh peretas, kesalahan manusia, hingga ketidakpatuhan terhadap protokol keamanan. Apapun penyebabnya, dampaknya terhadap individu dan masyarakat sangat merugikan. Selain ancaman langsung terhadap privasi, kebocoran ini juga merusak kepercayaan publik terhadap kemampuan pemerintah dalam melindungi data pribadi warganya.

Dampak Kebocoran Data pada Kominfo

Dampak dari kebocoran data yang melibatkan Kominfo sangat luas dan beragam. Beberapa dampak utama termasuk:

  1. Pencurian Identitas: Data pribadi yang bocor dapat digunakan oleh pelaku kejahatan untuk mencuri identitas seseorang. Ini bisa berujung pada pembukaan rekening bank fiktif, aplikasi kredit palsu, dan bahkan kegiatan kriminal lainnya atas nama korban.
  2. Kehilangan Kepercayaan Publik: Kebocoran data yang melibatkan lembaga pemerintah merusak kepercayaan masyarakat terhadap institusi yang seharusnya melindungi mereka. Ini bisa mengurangi partisipasi warga dalam program-program pemerintah dan menurunkan legitimasi pemerintah itu sendiri.
  3. Kerugian Ekonomi: Individu yang identitasnya dicuri seringkali mengalami kerugian finansial yang signifikan. Selain itu, perusahaan yang datanya bocor juga dapat menghadapi sanksi hukum dan kehilangan reputasi, yang berdampak pada penurunan nilai saham dan kepercayaan investor.

Tindakan yang Harus Dilakukan oleh Peneliti dan Akademisi

Peneliti dan akademisi memiliki peran penting dalam membantu mengatasi krisis kebocoran data ini. Beberapa tindakan yang dapat mereka ambil meliputi:

1. Penelitian dan Pengembangan Teknologi Keamanan

Peneliti di bidang keamanan siber dapat berkontribusi dengan mengembangkan teknologi yang lebih aman untuk melindungi data pribadi. Ini termasuk:

  • Enkripsi Data: Mengembangkan algoritma enkripsi yang lebih kuat untuk melindungi data selama penyimpanan dan transmisi. Enkripsi yang kuat memastikan bahwa data yang bocor tidak dapat dibaca oleh pihak yang tidak berwenang.
  • Sistem Autentikasi: Mengembangkan metode autentikasi multifaktor yang lebih aman dan mudah digunakan untuk memastikan hanya pengguna yang berwenang yang dapat mengakses data. Autentikasi biometrik, token keamanan, dan autentikasi dua faktor dapat meningkatkan keamanan.
  • Deteksi Intrusi: Meningkatkan sistem deteksi intrusi untuk mengenali dan merespons serangan siber dengan cepat. Teknologi ini dapat memantau aktivitas jaringan secara real-time dan mendeteksi anomali yang mungkin menunjukkan serangan siber.

2. Analisis Kebijakan dan Regulasi

Akademisi di bidang hukum dan kebijakan publik dapat mengevaluasi dan merekomendasikan perubahan kebijakan untuk meningkatkan perlindungan data. Ini termasuk:

  • Evaluasi Regulasi: Meninjau regulasi yang ada untuk mengidentifikasi kelemahan dan celah yang memungkinkan kebocoran data. Evaluasi ini harus mencakup analisis terhadap undang-undang perlindungan data, kebijakan privasi, dan standar keamanan yang diterapkan oleh lembaga pemerintah.
  • Pengembangan Kebijakan: Merekomendasikan kebijakan baru yang memperkuat perlindungan data pribadi, seperti undang-undang privasi yang lebih ketat dan sanksi yang lebih berat bagi pelanggaran. Kebijakan ini harus dirancang untuk memberikan perlindungan yang komprehensif terhadap data pribadi dan memastikan kepatuhan yang ketat.
  • Pendidikan dan Kesadaran: Mengembangkan program pendidikan dan kampanye kesadaran untuk meningkatkan pemahaman masyarakat dan lembaga tentang pentingnya keamanan data. Program ini harus mencakup pelatihan tentang praktik terbaik dalam keamanan data, serta upaya untuk meningkatkan kesadaran tentang risiko kebocoran data dan cara melindungi diri.

3. Studi Dampak Sosial dan Ekonomi

Peneliti sosial dan ekonomi dapat menganalisis dampak kebocoran data pada individu dan masyarakat. Ini membantu dalam memahami sejauh mana kerugian yang ditimbulkan dan merancang intervensi yang tepat. Beberapa aspek yang dapat dianalisis meliputi:

  • Dampak Ekonomi: Mengukur kerugian finansial yang dialami individu dan perusahaan akibat kebocoran data. Penelitian ini dapat mencakup analisis biaya pemulihan identitas, kerugian bisnis, dan dampak ekonomi secara keseluruhan.
  • Dampak Psikologis: Meneliti dampak psikologis terhadap korban pencurian identitas, termasuk stres, kecemasan, dan kehilangan kepercayaan. Penelitian ini dapat membantu dalam merancang program dukungan untuk korban dan meningkatkan pemahaman tentang dampak jangka panjang dari kebocoran data.
  • Kesejahteraan Sosial: Menganalisis bagaimana kebocoran data mempengaruhi kesejahteraan sosial dan kohesi masyarakat. Penelitian ini dapat mengevaluasi dampak kebocoran data terhadap hubungan sosial, kepercayaan antarwarga, dan rasa aman dalam masyarakat.

4. Kolaborasi dan Penyebaran Pengetahuan

Pemerintah harus menggandeng Akademisi peneliti, industri, dan masyarakat untuk mengatasi masalah kebocoran data. Ini termasuk:

  • Kolaborasi Antar Disiplin: Membentuk tim lintas disiplin yang menggabungkan keahlian di bidang teknologi, hukum, ekonomi, dan sosial untuk menemukan solusi komprehensif. Kolaborasi ini dapat menghasilkan pendekatan yang lebih holistik dan efektif dalam menangani kebocoran data.
  • Penyebaran Pengetahuan: Menerbitkan hasil penelitian dalam jurnal ilmiah, laporan kebijakan, dan media populer untuk meningkatkan pemahaman publik dan pemangku kepentingan. Penyebaran pengetahuan yang luas dapat membantu dalam membangun kesadaran dan mendorong tindakan yang tepat untuk melindungi data pribadi.
  • Pelatihan dan Workshop: Mengadakan pelatihan dan workshop untuk meningkatkan keterampilan dan kesadaran tentang keamanan data di kalangan profesional dan masyarakat umum. Program pelatihan ini dapat mencakup praktik terbaik dalam keamanan siber, penggunaan alat enkripsi, dan metode perlindungan data lainnya.

5. Penerapan dan Evaluasi Intervensi

Peneliti dapat mengembangkan dan menguji intervensi untuk meningkatkan keamanan data. Beberapa langkah yang bisa dilakukan adalah:

  • Proyek Percontohan: Melakukan proyek percontohan untuk menguji efektivitas teknologi atau kebijakan baru sebelum diterapkan secara luas. Proyek percontohan ini dapat memberikan wawasan tentang keberhasilan dan tantangan yang mungkin dihadapi dalam penerapan skala besar.
  • Evaluasi Program: Mengevaluasi program dan kebijakan yang sudah diterapkan untuk menentukan keberhasilan dan area yang memerlukan perbaikan. Evaluasi ini harus mencakup analisis kualitatif dan kuantitatif untuk mengukur dampak intervensi dan mengidentifikasi faktor-faktor yang mempengaruhi keberhasilannya.
  • Umpan Balik dan Perbaikan: Menggunakan umpan balik dari evaluasi untuk memperbaiki dan memperkuat intervensi yang ada. Proses ini harus melibatkan pemangku kepentingan utama dan memastikan bahwa perubahan yang dilakukan berdasarkan data dan temuan yang valid.

Kesimpulan

Kebocoran data pada Kominfo adalah masalah serius yang memerlukan perhatian dan tindakan dari berbagai pihak, termasuk peneliti dan akademisi. Dengan mengembangkan teknologi keamanan yang lebih baik, mengevaluasi dan mengusulkan perubahan kebijakan, menganalisis dampak sosial dan ekonomi, serta bekerja sama dengan berbagai pemangku kepentingan, peneliti dan akademisi dapat memainkan peran kunci dalam mengatasi masalah ini. Penelitian yang mendalam dan kolaboratif, serta penyebaran pengetahuan yang luas, akan membantu dalam membangun sistem perlindungan data yang lebih kuat dan mengembalikan kepercayaan masyarakat terhadap pemerintah dan institusi yang bertanggung jawab. Melalui pendekatan ini, diharapkan dapat tercipta lingkungan yang lebih aman dan terlindungi bagi data pribadi warga negara.

TURIN ISLAMIC ECONOMIC FORUM ONLINE WORKSHOP

CALL FOR PAPERS

 

TIEF-EJIF Virtual Workshop is coming. Submit your abstract and full paper until August 25th, 2023

 

Following the success of the past five editions of the Turin Islamic Economic Forum (TIEF) and European Journal of Islamic Finance Workshop, we are organizing a new virtual workshop to contribute to the knowledge of the broad Islamic economics and finance themes as: 

1. Accounting for Islamic finance rules

2. Islamic finance tools

3. Asset management and infrastructures

4. ESG Islamic finance

5. Smart cities in Islamic worlds

6. New technologies for Islamic financial management

7. Islamic central banking system

8. Halal food and beverage issues

9. Halal tourism

 

CONFERENCE LANGUAGE & SUBMISSION   Authors are invited to submit their full papers in English using Word format. Both theoretical and empirical papers are considered. Submissions should be made through email: [email protected]

PUBLICATION OPPORTUNITY

Selected papers presented at the conference will be published in a special issue of the European Journal of Islamic Finance (ISSN: 2421-2172). 

IMPORTANT DATES

  • Abstract deadline: 14 July 2023
  • Full paper deadline: 23 October 2023
  • Notifications: Within eight days after the abstract and then paper submission by the scientific committee.
  • Registrations: 31 October - 20 November 2023
  • Full paper virtual presentations by the author(s): 23 November 2023

REGISTRATION FEES
Free

 

Detail Info:

https://www.ojs.unito.it/index.php/EJIF