MONDAY FORUM

admin 19 Sep 2023

πŸ“Œ MONDAY FORUM πŸ“Œ

πŸ•° Senin, 25 September 2023 M/ 09 Rabiul Awal 1445 H
⏳ 09.30 WIB - selesai

πŸ“š  Seri 027πŸ“š
Praktek Manajemen SDM Haji dan Umroh di Saudi (Sharing Experience)

πŸ§‘πŸ»β€πŸŽ“  Speaker:
Dr. Ir. Muhammad Fahri Farid, MM
Direktur Pusat Studi SDM Syariah
Dosen IAI Tazkia

πŸŽ™ Zoom Meeting πŸŽ™
https://us02web.zoom.us/j/85317677713?pwd=ZlRoYUtXOFY5b3RhN0Q3em5VTUJIZz09

Meeting ID: 853 1767 7713
Passcode: Tazkia123

Diselenggarakan oleh:
Lembaga Penelitian & Pemberdayaan Masyarakat Institut Agama Islam Tazkia

Anda Mungkin Suka

Bagaimana Cara Menerapkan Metode Statistik Lanjutan pada Penelitian Kuantitatif

Metode statistik lanjutan digunakan dalam penelitian kuantitatif ketika pertanyaan penelitian atau data yang ada memerlukan analisis yang lebih kompleks dan mendalam. Berikut adalah langkah-langkah utama dalam metodologi metode statistik lanjutan dalam penelitian kuantitatif:

1. Perumusan Masalah:
  - Mulailah dengan merumuskan masalah penelitian yang memerlukan analisis statistik lanjutan. Jelaskan dengan jelas tujuan penelitian, variabel independen, dan variabel dependen yang akan diteliti.

2. Pemilihan Metode Statistik Lanjutan:
  - Pilih metode statistik lanjutan yang sesuai dengan masalah penelitian Anda. Beberapa metode statistik lanjutan yang umum digunakan meliputi analisis regresi nonlinier, analisis survial (untuk data bertahan hidup), analisis cluster, analisis multilevel, analisis deret waktu (time series analysis), analisis jaringan sosial, analisis SEM (Structural Equation Modeling), dan lainnya.

3. Pengumpulan Data:
  - Kumpulkan data yang sesuai dengan variabel independen dan dependen yang diperlukan untuk analisis statistik lanjutan. Pastikan data tersebut relevan dan representatif.

4. Preprocessing Data:
  - Lakukan pembersihan dan persiapan data yang melibatkan penanganan data yang hilang, penanganan outlier, pengkodean variabel, transformasi data, atau rekodifikasi jika diperlukan.

5. Estimasi Model:
  - Terapkan metode statistik lanjutan yang telah Anda pilih pada data Anda. Ini dapat melibatkan penghitungan parameter model, penyesuaian model, atau identifikasi pola yang kompleks dalam data.

6. Pengujian Hipotesis:
  - Uji hipotesis yang sesuai dalam konteks analisis statistik lanjutan. Ini bisa melibatkan pengujian signifikansi parameter, uji goodness-of-fit, atau uji asumsi model yang digunakan.

7. Evaluasi Model:
  - Evaluasi kualitas model yang dihasilkan dari analisis statistik lanjutan dengan menggunakan metrik yang sesuai. Pastikan model Anda cocok dengan data dan memberikan hasil yang bermakna.

8. Interpretasi Hasil:
  - Interpretasikan hasil analisis statistik lanjutan dengan cermat. Jelaskan temuan Anda dan hubungan antar variabel yang ditemukan.

9. Kesimpulan:
  - Tarik kesimpulan berdasarkan hasil analisis statistik lanjutan. Jelaskan apakah hipotesis Anda didukung oleh data dan apakah temuan tersebut relevan dalam konteks penelitian Anda.

10. Pelaporan Hasil:
   - Sajikan hasil analisis statistik lanjutan dalam laporan penelitian Anda. Sertakan detail metode, hasil, dan interpretasi.

Penting untuk memahami bahwa analisis statistik lanjutan memerlukan pengetahuan statistik yang lebih mendalam dan seringkali memerlukan perangkat lunak statistik yang khusus. Jika Anda tidak memiliki keahlian statistik yang cukup, konsultasikan dengan ahli statistik atau pakar statistik untuk memastikan bahwa analisis Anda dilakukan dengan benar.

Menaklukkan Waktu: Mengenal Lebih Dekat dengan Kekuatan Analisis Survival

Penelitian survival, atau yang dikenal juga dengan analisis survival, merupakan metode statistik yang digunakan untuk menganalisis data waktu-hidup. Metode ini sangat penting dalam berbagai bidang, termasuk kedokteran, biologi, insuransi, dan ekonomi, untuk memprediksi waktu terjadinya suatu peristiwa, seperti kematian, kegagalan mesin, atau lainnya. Pemahaman tentang penelitian survival tidak hanya penting bagi para peneliti tetapi juga bagi publik umum, karena aplikasinya yang luas dan penting dalam kehidupan sehari-hari.

Apa Itu Penelitian Survival?

Secara sederhana, penelitian survival mengamati waktu mulai dari suatu titik awal hingga terjadinya suatu peristiwa tertentu. Dalam konteks kesehatan, peristiwa tersebut bisa berupa kematian pasien atau kekambuhan penyakit, sedangkan dalam teknik, itu bisa jadi kegagalan suatu komponen mesin. Yang membuat analisis ini unik adalah kemampuannya dalam menangani data yang 'disensor'. Data disensor terjadi ketika waktu peristiwa tidak diketahui secara pasti, hanya diketahui telah melebihi durasi pengamatan.

Metode dalam Penelitian Survival

Dalam analisis survival, terdapat beberapa alat ukur penting yang digunakan untuk mengestimasi dan memahami waktu sampai terjadinya suatu peristiwa. Berikut ini adalah beberapa alat ukur utama yang sering digunakan dalam penelitian survival:

1. Fungsi Survival: Alat ukur ini mengestimasi probabilitas bahwa subjek tertentu akan bertahan lebih lama dari waktu tertentu. Fungsi survival, S(t), biasanya didefinisikan sebagai probabilitas bahwa waktu kejadian T lebih besar dari waktu t, S(t) = P(T > t).

2. Fungsi Hazard: Mengukur risiko instantan kejadian peristiwa pada waktu t, asalkan subjek telah bertahan hingga waktu t tanpa kejadian. Fungsi hazard, h(t), sering digambarkan sebagai limit probabilitas kejadian peristiwa dalam interval waktu yang sangat kecil, dibagi dengan panjang interval tersebut, kondisional pada tidak adanya peristiwa hingga waktu t.

3. Kurva Kaplan-Meier: Metode non-parametrik untuk mengestimasi fungsi survival dari data yang mungkin termasuk censoring. Kurva Kaplan-Meier sangat berguna dalam menampilkan data survival dan memungkinkan visualisasi estimasi survival pada setiap titik waktu.

4. Model Cox Proportional Hazards: Ini adalah model semi-parametrik yang digunakan untuk menilai simultan efek dari beberapa faktor risiko pada waktu kejadian. Model ini mengasumsikan bahwa efek dari variabel prediktor terhadap risiko kejadian adalah konstan sepanjang waktu dan berfokus pada estimasi proporsi risiko (hazards) yang berhubungan dengan variabel prediktor.

5. Log-Rank Test: Uji statistik yang digunakan untuk membandingkan kurva survival antara dua atau lebih kelompok. Ini adalah metode non-parametrik untuk menguji hipotesis nol bahwa tidak ada perbedaan dalam fungsi survival antar kelompok yang dibandingkan.

6. Analisis Regresi Parametrik: Melibatkan model-model seperti model Weibull, eksponensial, atau log-normal yang mengasumsikan distribusi statistik tertentu untuk data waktu-hidup. Model-model ini berguna dalam situasi di mana asumsi proporsional hazards dari model Cox tidak dipenuhi.

7. Cumulative Incidence Function: Dalam konteks kompetisi risiko, fungsi ini digunakan untuk mengestimasi probabilitas kejadian peristiwa tertentu seiring waktu, dengan mempertimbangkan adanya risiko kompetitif yang bisa mencegah terjadinya peristiwa yang diinginkan.

Pemilihan alat ukur yang tepat dalam analisis survival sangat bergantung pada jenis data, tujuan analisis, dan asumsi yang dibuat mengenai data tersebut. Kesesuaian model dan teknik statistik ini mempengaruhi interpretasi dan validitas kesimpulan yang dihasilkan dari analisis survival.

Aplikasi Penelitian Survival di Bidang Ekonomi dan Keuangan Syariah

Analisis survival dalam konteks ekonomi dan keuangan syariah memperlihatkan aplikasi unik dan penting dari metodologi ini, terutama dalam menghadapi tantangan dan peluang yang unik di sektor ini. Dalam ekonomi syariah, prinsip-prinsip keadilan dan penghindaran riba (bunga) menuntut pendekatan yang berbeda dari keuangan konvensional, dan analisis survival bisa memberikan wawasan yang mendalam dalam berbagai aspek.

1. Kredit dan Pembiayaan: Dalam keuangan syariah, instrumen pembiayaan seperti Murabahah (jual beli), Ijarah (sewa), dan Mudarabah (kerjasama investasi) memiliki struktur risiko yang berbeda dari pinjaman konvensional. Analisis survival dapat digunakan untuk memprediksi 'waktu hingga kegagalan' dalam kredit, yaitu ketika debitur gagal membayar sesuai dengan kesepakatan. Hal ini membantu lembaga keuangan syariah dalam menilai risiko dan menetapkan syarat pembiayaan yang sesuai dengan prinsip syariah.

2. Durasi Produk Keuangan: Produk keuangan syariah, seperti sukuk (obligasi syariah), sering kali memiliki jangka waktu yang terikat dengan proyek tertentu atau aset produktif. Analisis survival dapat membantu dalam mengestimasi masa berlakunya produk keuangan ini, yang penting untuk manajemen portofolio dan strategi investasi.

3. Keberlanjutan Bisnis: Dalam ekonomi syariah, bisnis harus tidak hanya menguntungkan tetapi juga harus memenuhi kriteria keadilan sosial dan keberlanjutan lingkungan. Analisis survival dapat digunakan untuk memprediksi keberlangsungan usaha yang mematuhi prinsip syariah, membantu investor dan regulator dalam membuat keputusan yang berinformasi.

Penerapan Analisis Survival dalam Keuangan Syariah

Studi Kasus: Analisis Durasi Sukuk. Misalnya, sukuk sering digunakan untuk mendanai proyek infrastruktur atau real estate. Analisis survival dapat digunakan untuk mengestimasi durasi sukuk ini, memperhitungkan variabel seperti tingkat pengembalian, risiko proyek, dan kondisi pasar. Hal ini membantu dalam menyusun sukuk dengan struktur yang lebih tahan terhadap volatilitas pasar dan risiko proyek.

Studi Kasus: Risiko Kredit pada Pembiayaan Murabahah. Pembiayaan Murabahah adalah metode pembiayaan populer dalam keuangan syariah, di mana bank membeli barang dan menjualnya kembali kepada pelanggan dengan margin keuntungan yang disepakati. Menggunakan analisis survival untuk memodelkan waktu hingga kegagalan pembayaran bisa mengungkap pola yang mempengaruhi risiko kredit, seperti karakteristik debitur atau kondisi ekonomi.

Analisis survival menawarkan alat yang kuat dalam mengatasi beberapa tantangan unik yang dihadapi oleh ekonomi dan keuangan syariah. Dengan memahami dan memprediksi durasi dan risiko dari berbagai instrumen dan kegiatan bisnis dalam ekonomi syariah, para pelaku pasar dapat membuat keputusan yang lebih tepat dan efektif, sejalan dengan prinsip-prinsip syariah yang mendorong keadilan sosial dan keberlanjutan ekonomi.

Persyaratan Pengajuan Proposal OR IPSH 2024

Persyaratan Pengajuan Proposal OR IPSH 2024
1. SDM Iptek Aktif BRIN dan harus ada anggota dari OR IPSH
2. Kepakaran dan rekam jejak penelitian sesuai proposal yang diajukan
3. Satu (1) SDM Iptek maksimum hanya satu (1) proposal dalam satu skema (Ketua-anggota/ anggota-anggota)
4. Ketua/Peneliti Kepala diutamakan berpendidikan S2 (magister)
5. SDM Iptek (program degree by research BRIN) dapat mengajukan proposal
6. Empat hingga enam (4-6) orang SDM Iptek didukung multidisiplin / keahlian
7. Dianjurkan melibatkan lebih dari satu unit kerja (Pusat Riset) di BRIN
8. Penelitian yang berkolaborasi dengan peneliti asing dan peneliti/akademisi diaspora Indonesia akan diutamakan
9. Dapat melibatkan periset anggota dari luar BRIN sesuai kebutuhan kepakaran (tidak lebih dari 50% dari jumlah anggota tim)
10. Dapat menarik berbagai sumber pendanaan (multi sources funding scheme) dan / atau kemitraan pihak luar BRIN
11. Mempunyai keluaran sesuai dengan yang ditentukan.

LANGKAH UTAMA DALAM METODOLOGI ANALISIS DATA SEKUNDER PADA PENELITIAN KUANTITATIF

Metodologi analisis data sekunder dalam konteks metodologi kuantitatif melibatkan penggunaan data yang telah dikumpulkan oleh orang lain untuk menjawab pertanyaan penelitian Anda. Berikut ini adalah langkah-langkah utama dalam melakukan analisis data sekunder dalam metodologi kuantitatif:

Definisikan Tujuan Penelitian Anda: Tentukan secara jelas pertanyaan penelitian atau hipotesis yang ingin Anda jawab dengan menggunakan data sekunder. Pastikan tujuan penelitian Anda sesuai dengan data yang tersedia.

Identifikasi Sumber Data: Temukan sumber data sekunder yang sesuai dengan tujuan penelitian Anda. Sumber data ini dapat berupa dataset dari penelitian sebelumnya, survei nasional, database pemerintah, atau sumber data lainnya.

Pahami Data yang Tersedia: Teliti dataset yang Anda akan gunakan. Pahami struktur data, variabel-variabel yang ada, dan metode pengumpulan data yang digunakan. Ini akan membantu Anda dalam merancang analisis Anda.

 

Rancang Rencana Analisis: Tentukan jenis analisis yang akan Anda lakukan. Ini bisa meliputi analisis statistik deskriptif, analisis regresi, analisis korelasi, atau teknik-teknik lainnya sesuai dengan pertanyaan penelitian Anda.

 

Persiapkan Data: Lakukan praproses data yang diperlukan. Ini mungkin termasuk membersihkan data dari nilai yang hilang atau anomali, mengkode variabel, atau mengubah format data jika diperlukan.

 

Lakukan Analisis Statistik: Terapkan metode analisis statistik yang sesuai untuk menjawab pertanyaan penelitian Anda. Pastikan bahwa metode analisis ini sesuai dengan jenis data yang Anda miliki.

 

Interpretasi Hasil: Setelah melakukan analisis, interpretasikan hasil Anda. Jelaskan temuan Anda dan hubungkannya kembali dengan pertanyaan penelitian Anda.

 

Lakukan Uji Statistik (jika diperlukan): Jika Anda melakukan analisis inferensial, seperti uji hipotesis, pastikan untuk melakukan uji statistik yang sesuai dan memberikan interpretasi yang tepat.

 

Simpulkan Penelitian Anda: Buat kesimpulan tentang apakah data sekunder mendukung atau tidak mendukung hipotesis atau pertanyaan penelitian Anda. Jelaskan implikasi temuan Anda.

 

Buat Laporan Penelitian: Sajikan hasil penelitian Anda dalam bentuk laporan penelitian yang sistematis. Sertakan detail analisis, grafik, dan tabel yang mendukung temuan Anda.

 

Rujukan dan Pengakuan Sumber Data: Pastikan untuk memberikan rujukan yang tepat kepada sumber data sekunder yang Anda gunakan. Ini penting untuk integritas ilmiah dan etika penelitian.

 

Evaluasi Keterbatasan: Jangan lupakan untuk mencantumkan keterbatasan-keterbatasan yang mungkin ada dalam penggunaan data sekunder ini dalam penelitian Anda.

 

Langkah-langkah di atas dapat membantu Anda dalam melakukan analisis data sekunder dalam konteks metodologi kuantitatif dengan cermat dan efektif. Pastikan Anda mengikuti prosedur penelitian yang baik dan menjaga integritas data serta etika penelitian.