MONDAY FORUM

admin 19 Sep 2023

πŸ“Œ MONDAY FORUM πŸ“Œ

πŸ•° Senin, 25 September 2023 M/ 09 Rabiul Awal 1445 H
⏳ 09.30 WIB - selesai

πŸ“š  Seri 027πŸ“š
Praktek Manajemen SDM Haji dan Umroh di Saudi (Sharing Experience)

πŸ§‘πŸ»β€πŸŽ“  Speaker:
Dr. Ir. Muhammad Fahri Farid, MM
Direktur Pusat Studi SDM Syariah
Dosen IAI Tazkia

πŸŽ™ Zoom Meeting πŸŽ™
https://us02web.zoom.us/j/85317677713?pwd=ZlRoYUtXOFY5b3RhN0Q3em5VTUJIZz09

Meeting ID: 853 1767 7713
Passcode: Tazkia123

Diselenggarakan oleh:
Lembaga Penelitian & Pemberdayaan Masyarakat Institut Agama Islam Tazkia

Anda Mungkin Suka

Mengenal Jebakan dalam Meta-Analisis: Variasi Kekuatan Bukti

Dalam dunia penelitian, meta-analisis sering dianggap sebagai "mahkota" dari bukti ilmiah. Meta-analisis adalah alat yang kuat untuk mengintegrasikan temuan dari berbagai studi dan menyajikannya dalam kerangka yang koheren. Ini memungkinkan peneliti untuk melampaui batasan studi individual dan memperoleh pemahaman yang lebih komprehensif tentang topik yang dipelajari. Keunikan meta-analisis terletak pada kemampuannya untuk menghasilkan perkiraan yang lebih akurat dan stabil dari efek intervensi atau hubungan antara variabel, dibandingkan dengan studi tunggal atau kecil.

Apa Itu Kekuatan Bukti? Kekuatan bukti dalam konteks meta-analisis meliputi berbagai aspek, mulai dari kualitas metodologi studi individual hingga konsistensi hasil antar studi. Ini juga mencakup keandalan dan ketepatan temuan yang dihasilkan. Kualitas metodologi mengacu pada seberapa baik studi-studi itu dirancang dan dilaksanakan, sedangkan konsistensi hasil mengacu pada sejauh mana temuan dari berbagai studi bersifat seragam atau saling bertentangan. Kekuatan bukti ini menjadi landasan bagi interpretasi hasil meta-analisis dan keputusan yang dibuat berdasarkan temuan tersebut.

Mengapa Variasi Ini Menjadi Masalah? Variasi dalam kekuatan bukti dapat menimbulkan sejumlah masalah dalam interpretasi hasil meta-analisis. Ketidaksesuaian metodologi antar studi, terutama jika studi-studi dengan kualitas metodologi yang rendah dimasukkan dalam analisis, dapat menghasilkan temuan yang bias atau tidak dapat diandalkan. Selain itu, ketidak konsistenan hasil antar studi dapat membingungkan dan menyulitkan dalam menyimpulkan efek sebenarnya dari intervensi atau hubungan antara variabel.

Mengenal Jebakan Variasi Kekuatan Bukti:
1. Heterogenitas: Heterogenitas merujuk pada variasi dalam desain studi, populasi sampel, intervensi, dan hasil yang diukur di antara studi-studi yang diikutsertakan dalam meta-analisis. Ini dapat mengakibatkan ketidak konsistenan hasil antar studi dan membuat interpretasi yang sulit.
2. Bias Publikasi: Bias publikasi dapat terjadi ketika ada kecenderungan untuk menerbitkan studi-studi dengan hasil yang signifikan secara statistik, sementara studi-studi dengan hasil negatif atau tidak signifikan lebih jarang dipublikasikan. Hal ini dapat mengakibatkan overestimasi efek intervensi dalam meta-analisis.
3. Kualitas Metodologi: Kualitas metodologi yang bervariasi di antara studi-studi yang diinklusi dalam meta-analisis dapat mempengaruhi keandalan temuan secara keseluruhan. Studi dengan metodologi yang lemah mungkin memiliki risiko bias yang lebih tinggi dan oleh karena itu hasilnya mungkin kurang dapat diandalkan.

Strategi Menghadapi Jebakan:
- Menilai Kualitas Studi: Penting untuk melakukan penilaian menyeluruh terhadap kualitas metodologi studi-studi yang akan dimasukkan dalam meta-analisis. Ini dapat melibatkan penggunaan skala penilaian kualitas studi atau pemeriksaan peer-review.
- Menganalisis Heterogenitas: Teknik statistik yang tepat, seperti analisis heterogenitas atau meta-regresi, dapat digunakan untuk mengeksplorasi dan mengukur tingkat heterogenitas di antara studi-studi yang diikutsertakan.
- Sensitivitas Analisis: Melakukan analisis sensitivitas untuk menguji kestabilan hasil meta-analisis dengan mempertimbangkan pengecualian atau penambahan studi-studi tertentu. Ini membantu menilai seberapa sensitif temuan meta-analisis terhadap perubahan dalam komposisi studi.

Analisis Multivariat Pada Penelitian Kuantitatif

Analisis multivariat adalah metode statistik yang digunakan dalam penelitian kuantitatif untuk menganalisis hubungan kompleks antara dua atau lebih variabel independen dan variabel dependen. Metodologi analisis multivariat melibatkan serangkaian langkah-langkah yang kompleks. Berikut adalah langkah-langkah utama dalam metodologi analisis multivariat:

1. Perumusan Masalah:
  - Identifikasi masalah atau pertanyaan penelitian yang ingin Anda jawab dengan analisis multivariat. Jelaskan dengan jelas variabel independen dan dependen yang akan Anda gunakan.

2. Pengumpulan Data:
  - Kumpulkan data sesuai dengan variabel independen dan dependen yang telah ditentukan. Pastikan data tersebut relevan dengan tujuan penelitian Anda.

3. Preprocessing Data:
  - Lakukan pembersihan dan persiapan data yang melibatkan penanganan data yang hilang, penanganan outlier, pengkodean variabel, dan transformasi data jika diperlukan.

4. Pemilihan Model:
  - Pilih model analisis multivariat yang sesuai untuk masalah penelitian Anda. Contoh model-model ini meliputi analisis regresi multivariat, analisis faktor, analisis komponen utama, analisis jalur (path analysis), analisis struktural (structural equation modeling), dan lainnya.

5. Variabel Independen:
  - Pilih variabel independen yang akan dimasukkan dalam model. Pastikan variabel ini memiliki relevansi teoritis dalam konteks penelitian Anda.

6. Estimasi Model:
  - Gunakan perangkat lunak statistik atau program analisis multivariat untuk mengestimasi model yang telah dipilih. Ini dapat melibatkan perhitungan parameter, koefisien, dan pengujian signifikansi.

7. Evaluasi Model:
  - Evaluasi kualitas model dengan menggunakan metrik yang sesuai dengan jenis model yang digunakan. Misalnya, untuk analisis regresi multivariat, Anda dapat menggunakan R-squared, koefisien determinasi, atau uji F. Untuk analisis faktor atau analisis komponen utama, Anda dapat menggunakan nilai eigenvalue atau kebolehjadian kumulatif.

8. Interpretasi Hasil:
  - Interpretasikan hasil analisis multivariat. Jelaskan dampak variabel independen terhadap variabel dependen. Identifikasi hubungan, ketergantungan, dan efek-efek antar variabel.

9. Pengujian Hipotesis:
  - Uji hipotesis yang sesuai dalam kerangka analisis multivariat. Uji signifikansi parameter dan statistik uji model secara keseluruhan.

10. Kesimpulan:
   - Tarik kesimpulan berdasarkan hasil analisis multivariat dan jawab pertanyaan penelitian Anda. Apakah hipotesis Anda didukung oleh data?

11. Pelaporan Hasil:
   - Sajikan hasil analisis multivariat dalam laporan penelitian Anda. Sertakan semua informasi yang diperlukan untuk memahami proses analisis dan hasil yang ditemukan.

Analisis multivariat adalah alat yang kuat untuk memahami hubungan kompleks antara variabel dalam penelitian kuantitatif. Karena kompleksitasnya, seringkali diperlukan keahlian statistik yang mendalam untuk mengelola dan menganalisis data dengan benar.

British Academy – ODA International Interdisciplinary Research Projects

Closing Date: 01/11/2023

Funding available for UK-based early career researchers working with international partners wishing to develop ODA-eligible interdisciplinary projects involving both the humanities and the social sciences.

The British Academy is providing a call for proposals for UK-based researchers across all disciplines within the social sciences and the humanities to develop new international interdisciplinary research that is ODA-eligible. Research may be problem-focused, creatively innovative and exploratory, and should bring together relevant disciplines in both the humanities and social sciences, where appropriate, for maximum impact/effect.

The Academy requires all applications to fundamentally involve and integrate both the humanities and the social sciences.

 

More info: https://www.myresearchconnect.com/british-academy-oda-international-interdisciplinary-research-projects/

3V: TIGA KARAKTERISTIK UTAMA BIG DATA

Big data adalah istilah yang digunakan untuk menggambarkan volume besar, keragaman, dan kecepatan tinggi data yang dihasilkan oleh berbagai sumber, seperti sensor, perangkat mobile, media sosial, transaksi bisnis, dan banyak lagi. Big data juga melibatkan data yang bervariasi dalam format dan jenis, termasuk teks, gambar, audio, dan video.

 

Ada tiga karakteristik utama dari big data yang dikenal sebagai "3V" yaitu:

1. Volume: Big data melibatkan jumlah data yang sangat besar. Ini bisa berarti terabytes, petabytes, atau bahkan exabytes data, yang jauh lebih besar dari apa yang dapat ditangani oleh sistem tradisional.

2. Velocity: Data yang dihasilkan dalam konteks big data sering kali datang dengan kecepatan tinggi. Contohnya adalah data streaming dari sensor IoT (Internet of Things) atau data dari media sosial yang terus-menerus diperbarui.

3. Variety: Big data mencakup berbagai jenis data, termasuk data terstruktur (misalnya, data dalam database relasional), data semi-terstruktur (misalnya, data dalam format XML atau JSON), dan data tak terstruktur (misalnya, teks dalam posting media sosial atau dokumen). Kombinasi dari berbagai jenis data ini menambah kompleksitas analisis big data.

 

Selain "3V," beberapa tambahan karakteristik telah ditambahkan ke konsep big data, seperti "Variability" (variabilitas dalam kecepatan dan jenis data), "Veracity" (keandalan dan keakuratan data), dan "Value" (kemampuan untuk mendapatkan wawasan berharga dari data tersebut).

Tujuan dari analisis big data adalah untuk mengidentifikasi pola, tren, dan wawasan yang dapat membantu organisasi dalam pengambilan keputusan yang lebih baik. Ini bisa digunakan di berbagai industri, termasuk bisnis, ilmu pengetahuan, kesehatan, dan banyak lagi. Solusi teknologi seperti sistem penyimpanan data yang skala-able, algoritma pemrosesan data yang cepat, dan teknik analisis data maju digunakan untuk mengatasi tantangan yang terkait dengan big data.