• Home
  • Berita
  • Nottingham Research Fellowship Program 2024 in UK | Fully Funded

Nottingham Research Fellowship Program 2024 in UK | Fully Funded

admin 14 Sep 2023

Link: https://scholarshipscorner.website/nottingham-research-fellowship-program/

Benefits:

1) Three years’ independent research funding, covering salary costs at c. £43,155 to £54,421 
2) the link to a permanent academic post, subject to performance
3) additional funding for research expenses totaling £75,000
childcare costs of up to £15,000
4) access to mentoring, career development, and networking with the wider fellowship community

Deadline:Friday 6 October 2023.

#ScholarshipsCorner #ResearchFellowship #fellowship #fellowships #NottinghamResearchFellowship #UK #research

Anda Mungkin Suka

Automatic Evaluation System: Apa saja elemen inovatifnya?

Inovasi dalam Sistem Penilaian Otomatis (Automatic Evaluation System) melibatkan penerapan teknologi canggih, terutama kecerdasan buatan (AI), untuk meningkatkan kecepatan, efisiensi, dan akurasi dalam mengevaluasi artikel jurnal. Berikut adalah beberapa elemen inovatif dalam pengembangan sistem penilaian otomatis:

 

>Penggunaan Kecerdasan Buatan (AI): Implementasi teknologi kecerdasan buatan memungkinkan sistem untuk belajar dari pola penilaian sejawat yang telah ada, memahami konteks dan kompleksitas bahasa ilmiah, serta memberikan penilaian yang lebih mendalam.

>Analisis Konteks dan Keterkaitan: Sistem dapat mengevaluasi artikel dengan memahami konteksnya, termasuk relevansi topik, urgensi penelitian, dan kontribusi terhadap literatur ilmiah yang sudah ada.

>Penilaian Multi-Aspek: Sistem dapat diprogram untuk menilai artikel melalui berbagai aspek, seperti metodologi penelitian, kejelasan presentasi, kontribusi unik, dan interpretasi data, memberikan penilaian yang lebih holistik.

>Pelabelan Otomatis dan Analisis Sentimen: Penggunaan teknologi pemrosesan bahasa alami (NLP) dan analisis sentimen memungkinkan sistem untuk menilai tingkat kejelasan, kohesi, dan sentimen umum dalam tulisan, membantu dalam mengevaluasi kualitas bahasa dan penyampaian pesan.

>Integrasi dengan Basis Data Ilmiah: Sistem dapat terhubung dengan basis data ilmiah besar untuk memeriksa keaslian dan orisinalitas artikel, mengidentifikasi potensi plagiarisme, dan memastikan bahwa kontribusi penelitian benar-benar baru.

>Adaptabilitas terhadap Bidang Penelitian: Sistem dapat disesuaikan dengan kebutuhan dan norma penilaian yang berlaku dalam berbagai bidang penelitian, memastikan keakuratan dan relevansi penilaian.

>Penggunaan Algoritma Pencocokan Penilai: Algoritma dapat digunakan untuk mencocokkan artikel dengan penilai yang memiliki keahlian khusus yang sesuai, meningkatkan akurasi penilaian dan memberikan umpan balik yang lebih bermakna.

>Analisis Kualitas Statistik dan Metodologi: Sistem dapat menganalisis metode penelitian dan statistik yang digunakan, mengidentifikasi kelemahan metodologi dan memberikan rekomendasi untuk perbaikan.

>Pemahaman Kontribusi Terhadap Literatur Ilmiah: Sistem dapat mengevaluasi bagaimana artikel berkontribusi terhadap literatur ilmiah yang sudah ada, membantu membedakan antara penelitian yang bersifat inkremental dan yang bersifat revolusioner.

>Ketersediaan Umpan Balik Otomatis: Sistem dapat memberikan umpan balik otomatis kepada penulis, memberikan informasi yang lebih rinci mengenai kelebihan dan kekurangan artikel serta saran perbaikan.

 

Dengan menggabungkan teknologi ini, sistem penilaian otomatis dapat mengoptimalkan proses penelaahan sejawat dengan memberikan hasil yang cepat, akurat, dan dapat diandalkan, mendukung kemajuan ilmu pengetahuan dan penyuntingan jurnal.

Exploring Research Approaches for Analyzing Taperas Policy

Kebijakan Tapera (Tabungan Perumahan Rakyat) adalah inisiatif pemerintah Indonesia yang bertujuan untuk menyediakan perumahan yang layak bagi masyarakat, terutama bagi mereka yang berpenghasilan rendah dan menengah. Sebagai kebijakan yang berdampak besar pada kesejahteraan sosial dan ekonomi, penting untuk menganalisis efektivitas dan implementasi kebijakan ini dengan pendekatan penelitian yang tepat. Artikel ini akan membahas beberapa pendekatan penelitian yang cocok digunakan untuk menganalisis kebijakan Tapera.
Analisis kebijakan Tapera sangat penting karena beberapa alasan:

  1. Evaluasi Efektivitas: Menilai sejauh mana kebijakan ini berhasil mencapai tujuannya.
  2. Identifikasi Tantangan: Mengidentifikasi kendala yang dihadapi dalam pelaksanaan kebijakan.
  3. Peningkatan Kebijakan: Memberikan rekomendasi untuk penyempurnaan kebijakan di masa depan.
  4. Transparansi dan Akuntabilitas: Memastikan bahwa kebijakan ini dikelola secara transparan dan bertanggung jawab.

Pendekatan Penelitian yang Cocok

Untuk menganalisis kebijakan Tapera, berbagai pendekatan penelitian dapat digunakan. Berikut adalah beberapa pendekatan yang dianggap paling cocok:

1. Pendekatan Kualitatif

Pendekatan kualitatif berguna untuk memahami proses dan konteks kebijakan Tapera secara mendalam. Beberapa metode kualitatif yang bisa digunakan antara lain:

a. Wawancara Mendalam

Melakukan wawancara mendalam dengan berbagai pemangku kepentingan, seperti:

  • Peserta Tapera: Untuk mendapatkan pandangan langsung mengenai pengalaman mereka dalam program ini.
  • Pejabat Pemerintah: Untuk memahami kebijakan dari sudut pandang implementator.
  • Ahli Ekonomi dan Perumahan: Untuk mendapatkan wawasan tentang bagaimana kebijakan ini dibandingkan dengan inisiatif serupa di negara lain.

b. Focus Group Discussion (FGD)

Mengadakan diskusi kelompok terarah dengan berbagai kelompok masyarakat dapat mengungkapkan perspektif yang beragam tentang kebijakan Tapera. FGD dapat digunakan untuk:

  • Mengetahui persepsi masyarakat tentang kebijakan ini.
  • Mengidentifikasi isu-isu kritis yang mungkin tidak terdeteksi melalui wawancara individual.

c. Studi Kasus

Studi kasus dapat dilakukan di berbagai daerah untuk mengeksplorasi implementasi kebijakan Tapera secara mendetail. Hal ini membantu memahami:

  • Perbedaan implementasi di berbagai lokasi geografis.
  • Dampak kebijakan pada komunitas tertentu.

2. Pendekatan Kuantitatif

Pendekatan kuantitatif berguna untuk mengukur dampak dan efektivitas kebijakan Tapera dengan menggunakan data statistik. Beberapa metode kuantitatif yang dapat digunakan antara lain:

a. Survei

Survei dapat digunakan untuk mengumpulkan data dari sejumlah besar responden terkait dengan:

  • Tingkat kesadaran dan partisipasi dalam program Tapera.
  • Kepuasan peserta terhadap program ini.
  • Dampak langsung dari kebijakan terhadap kondisi perumahan dan ekonomi keluarga.

b. Analisis Statistik

Analisis statistik menggunakan data dari Badan Pusat Statistik (BPS) dan BP Tapera dapat memberikan gambaran tentang:

  • Tren kepemilikan rumah sebelum dan sesudah implementasi kebijakan.
  • Pengaruh kebijakan terhadap tingkat pengeluaran rumah tangga.
  • Distribusi manfaat kebijakan berdasarkan demografi dan geografi.

c. Model Ekonometrik

Model ekonometrik dapat digunakan untuk mengidentifikasi hubungan kausal antara kebijakan Tapera dan indikator-indikator ekonomi seperti:

  • Tingkat kepemilikan rumah.
  • Pendapatan rumah tangga.
  • Pengeluaran untuk kebutuhan pokok.

3. Pendekatan Mixed-Methods

Pendekatan mixed-methods menggabungkan pendekatan kualitatif dan kuantitatif untuk mendapatkan gambaran yang lebih komprehensif tentang kebijakan Tapera. Beberapa metode yang bisa digunakan adalah:

a. Triangulasi

Menggunakan data kualitatif dan kuantitatif secara bersamaan untuk memvalidasi temuan. Misalnya:

  • Menggunakan wawancara mendalam untuk mengonfirmasi hasil survei.
  • Memadukan data statistik dengan studi kasus untuk memberikan konteks yang lebih kaya.

b. Sequential Explanatory Design

Pendekatan ini dimulai dengan pengumpulan dan analisis data kuantitatif, diikuti oleh pengumpulan dan analisis data kualitatif untuk menjelaskan hasil kuantitatif secara lebih mendalam. Misalnya:

  • Melakukan survei untuk mendapatkan data kuantitatif awal.
  • Melanjutkan dengan wawancara mendalam untuk memahami hasil survei tersebut.

Contoh Implementasi Penelitian

Untuk memberikan gambaran yang lebih konkret, berikut adalah contoh implementasi penelitian menggunakan berbagai pendekatan tersebut:

  • Studi Kasus di Daerah Perkotaan dan Pedesaan

Penelitian ini dapat dilakukan dengan mempelajari implementasi Tapera di daerah perkotaan seperti Jakarta dan daerah pedesaan seperti desa-desa di Jawa Tengah. Tujuannya adalah untuk memahami perbedaan implementasi dan dampak kebijakan Tapera di berbagai konteks geografis dan sosial-ekonomi.

  • Survei Kepuasan Peserta Tapera

Melakukan survei kepada peserta Tapera di berbagai wilayah Indonesia untuk mengukur tingkat kepuasan mereka terhadap program ini. Survei ini dapat mencakup aspek-aspek seperti aksesibilitas, transparansi pengelolaan dana, dan manfaat yang diperoleh.

  • Analisis Dampak Ekonomi

Menggunakan data statistik dari Badan Pusat Statistik (BPS) dan BP Tapera untuk menganalisis dampak kebijakan Tapera terhadap perekonomian lokal. Analisis ini dapat mencakup peningkatan kepemilikan rumah, perubahan kondisi ekonomi, dan pengurangan kesenjangan ekonomi.

Kesimpulan

Kebijakan Tapera merupakan langkah strategis pemerintah Indonesia untuk menyediakan perumahan yang layak dan terjangkau bagi masyarakat. Untuk memastikan bahwa kebijakan ini efektif dan sesuai dengan tujuan yang diinginkan, diperlukan penelitian yang mendalam dan komprehensif. Pendekatan penelitian kualitatif, kuantitatif, dan mixed-methods semuanya memiliki keunggulan masing-masing dalam mengkaji kebijakan Tapera. Dengan melakukan penelitian yang tepat, kita dapat memahami lebih baik tantangan dan peluang kebijakan ini, serta memberikan rekomendasi yang berguna untuk perbaikan kebijakan di masa depan. Melalui penelitian yang sistematis dan komprehensif, kebijakan Tapera dapat terus disempurnakan agar benar-benar mampu memenuhi kebutuhan perumahan masyarakat Indonesia, terutama bagi mereka yang berpenghasilan rendah dan menengah. Dengan demikian, kebijakan ini tidak hanya memberikan manfaat ekonomi tetapi juga mendukung pembangunan sosial yang berkelanjutan.

Biblioshiny R vs VOSviewer: Memahami Literatur Akademis dengan Lebih Interaktif

Dalam dunia penelitian, pemahaman dan analisis terhadap literatur akademis menjadi kunci untuk menghasilkan temuan yang berharga dan terkini. Dua alat yang sering digunakan dalam mengelola dan menganalisis literatur adalah Biblioshiny R dan VOSviewer. Kedua alat ini memiliki keunggulan masing-masing dalam membantu peneliti memahami dan menyajikan informasi literatur dengan cara yang lebih interaktif. Mari kita bandingkan keduanya untuk melihat bagaimana mereka dapat meningkatkan produktivitas penelitian Anda.

Biblioshiny R: Manajemen Literatur yang Efisien dan Visualisasi Data Interaktif
Biblioshiny R adalah aplikasi berbasis web yang memungkinkan pengguna untuk mengelola, menelusuri, dan berbagi koleksi literatur mereka dengan mudah. Salah satu keunggulan utamanya adalah kemampuannya untuk menyajikan data literatur dengan visualisasi yang interaktif. Pengguna dapat melihat statistik tentang koleksi literatur mereka, seperti distribusi tahun publikasi, jenis publikasi, atau frekuensi penulis tertentu, dalam bentuk grafik yang menarik dan mudah dipahami.

VOSviewer: Visualisasi Jaringan Literatur yang Kuat dan Analisis Citasi yang Mendalam
VOSviewer adalah alat yang khusus digunakan untuk visualisasi jaringan literatur dan analisis citasi. Salah satu keunggulan utamanya adalah kemampuannya untuk menganalisis dan mengekstrak pola-pola penting dari jaringan literatur, seperti kluster topik dan hubungan antara kata kunci. Dengan menggunakan VOSviewer, pengguna dapat dengan mudah menjelajahi struktur dan tren dalam literatur akademis mereka secara mendalam.

Perbandingan:
Kedua alat ini memiliki keunggulan yang unik dalam membantu peneliti memahami literatur akademis. Biblioshiny R menonjol dalam hal manajemen literatur yang efisien dan visualisasi data interaktif, sementara VOSviewer dikenal karena kemampuannya dalam visualisasi jaringan literatur dan analisis citasi yang mendalam. Pilihan tergantung pada kebutuhan spesifik penelitian dan preferensi pengguna. Jika Anda lebih tertarik pada visualisasi data yang interaktif dan statistik koleksi literatur, Biblioshiny R mungkin menjadi pilihan yang lebih baik. Namun, jika Anda lebih fokus pada analisis jaringan literatur dan hubungan citasi antar artikel, maka VOSviewer adalah pilihan yang lebih cocok.

Kesimpulan:
Dalam dunia penelitian yang semakin kompleks dan dinamis, alat-alat seperti Biblioshiny R dan VOSviewer memberikan bantuan berharga bagi peneliti dalam memahami dan menganalisis literatur akademis. Dengan memanfaatkan keunggulan masing-masing alat, peneliti dapat meningkatkan produktivitas dan keseluruhan kualitas penelitian mereka, membawa kita satu langkah lebih dekat menuju terobosan ilmiah yang lebih besar.

Analisis Multivariat Pada Penelitian Kuantitatif

Analisis multivariat adalah metode statistik yang digunakan dalam penelitian kuantitatif untuk menganalisis hubungan kompleks antara dua atau lebih variabel independen dan variabel dependen. Metodologi analisis multivariat melibatkan serangkaian langkah-langkah yang kompleks. Berikut adalah langkah-langkah utama dalam metodologi analisis multivariat:

1. Perumusan Masalah:
  - Identifikasi masalah atau pertanyaan penelitian yang ingin Anda jawab dengan analisis multivariat. Jelaskan dengan jelas variabel independen dan dependen yang akan Anda gunakan.

2. Pengumpulan Data:
  - Kumpulkan data sesuai dengan variabel independen dan dependen yang telah ditentukan. Pastikan data tersebut relevan dengan tujuan penelitian Anda.

3. Preprocessing Data:
  - Lakukan pembersihan dan persiapan data yang melibatkan penanganan data yang hilang, penanganan outlier, pengkodean variabel, dan transformasi data jika diperlukan.

4. Pemilihan Model:
  - Pilih model analisis multivariat yang sesuai untuk masalah penelitian Anda. Contoh model-model ini meliputi analisis regresi multivariat, analisis faktor, analisis komponen utama, analisis jalur (path analysis), analisis struktural (structural equation modeling), dan lainnya.

5. Variabel Independen:
  - Pilih variabel independen yang akan dimasukkan dalam model. Pastikan variabel ini memiliki relevansi teoritis dalam konteks penelitian Anda.

6. Estimasi Model:
  - Gunakan perangkat lunak statistik atau program analisis multivariat untuk mengestimasi model yang telah dipilih. Ini dapat melibatkan perhitungan parameter, koefisien, dan pengujian signifikansi.

7. Evaluasi Model:
  - Evaluasi kualitas model dengan menggunakan metrik yang sesuai dengan jenis model yang digunakan. Misalnya, untuk analisis regresi multivariat, Anda dapat menggunakan R-squared, koefisien determinasi, atau uji F. Untuk analisis faktor atau analisis komponen utama, Anda dapat menggunakan nilai eigenvalue atau kebolehjadian kumulatif.

8. Interpretasi Hasil:
  - Interpretasikan hasil analisis multivariat. Jelaskan dampak variabel independen terhadap variabel dependen. Identifikasi hubungan, ketergantungan, dan efek-efek antar variabel.

9. Pengujian Hipotesis:
  - Uji hipotesis yang sesuai dalam kerangka analisis multivariat. Uji signifikansi parameter dan statistik uji model secara keseluruhan.

10. Kesimpulan:
   - Tarik kesimpulan berdasarkan hasil analisis multivariat dan jawab pertanyaan penelitian Anda. Apakah hipotesis Anda didukung oleh data?

11. Pelaporan Hasil:
   - Sajikan hasil analisis multivariat dalam laporan penelitian Anda. Sertakan semua informasi yang diperlukan untuk memahami proses analisis dan hasil yang ditemukan.

Analisis multivariat adalah alat yang kuat untuk memahami hubungan kompleks antara variabel dalam penelitian kuantitatif. Karena kompleksitasnya, seringkali diperlukan keahlian statistik yang mendalam untuk mengelola dan menganalisis data dengan benar.