• Home
  • Berita
  • Automatic Evaluation System: Apa saja elemen inovatifnya?

Automatic Evaluation System: Apa saja elemen inovatifnya?

admin 9 Des 2023

Inovasi dalam Sistem Penilaian Otomatis (Automatic Evaluation System) melibatkan penerapan teknologi canggih, terutama kecerdasan buatan (AI), untuk meningkatkan kecepatan, efisiensi, dan akurasi dalam mengevaluasi artikel jurnal. Berikut adalah beberapa elemen inovatif dalam pengembangan sistem penilaian otomatis:

 

>Penggunaan Kecerdasan Buatan (AI): Implementasi teknologi kecerdasan buatan memungkinkan sistem untuk belajar dari pola penilaian sejawat yang telah ada, memahami konteks dan kompleksitas bahasa ilmiah, serta memberikan penilaian yang lebih mendalam.

>Analisis Konteks dan Keterkaitan: Sistem dapat mengevaluasi artikel dengan memahami konteksnya, termasuk relevansi topik, urgensi penelitian, dan kontribusi terhadap literatur ilmiah yang sudah ada.

>Penilaian Multi-Aspek: Sistem dapat diprogram untuk menilai artikel melalui berbagai aspek, seperti metodologi penelitian, kejelasan presentasi, kontribusi unik, dan interpretasi data, memberikan penilaian yang lebih holistik.

>Pelabelan Otomatis dan Analisis Sentimen: Penggunaan teknologi pemrosesan bahasa alami (NLP) dan analisis sentimen memungkinkan sistem untuk menilai tingkat kejelasan, kohesi, dan sentimen umum dalam tulisan, membantu dalam mengevaluasi kualitas bahasa dan penyampaian pesan.

>Integrasi dengan Basis Data Ilmiah: Sistem dapat terhubung dengan basis data ilmiah besar untuk memeriksa keaslian dan orisinalitas artikel, mengidentifikasi potensi plagiarisme, dan memastikan bahwa kontribusi penelitian benar-benar baru.

>Adaptabilitas terhadap Bidang Penelitian: Sistem dapat disesuaikan dengan kebutuhan dan norma penilaian yang berlaku dalam berbagai bidang penelitian, memastikan keakuratan dan relevansi penilaian.

>Penggunaan Algoritma Pencocokan Penilai: Algoritma dapat digunakan untuk mencocokkan artikel dengan penilai yang memiliki keahlian khusus yang sesuai, meningkatkan akurasi penilaian dan memberikan umpan balik yang lebih bermakna.

>Analisis Kualitas Statistik dan Metodologi: Sistem dapat menganalisis metode penelitian dan statistik yang digunakan, mengidentifikasi kelemahan metodologi dan memberikan rekomendasi untuk perbaikan.

>Pemahaman Kontribusi Terhadap Literatur Ilmiah: Sistem dapat mengevaluasi bagaimana artikel berkontribusi terhadap literatur ilmiah yang sudah ada, membantu membedakan antara penelitian yang bersifat inkremental dan yang bersifat revolusioner.

>Ketersediaan Umpan Balik Otomatis: Sistem dapat memberikan umpan balik otomatis kepada penulis, memberikan informasi yang lebih rinci mengenai kelebihan dan kekurangan artikel serta saran perbaikan.

 

Dengan menggabungkan teknologi ini, sistem penilaian otomatis dapat mengoptimalkan proses penelaahan sejawat dengan memberikan hasil yang cepat, akurat, dan dapat diandalkan, mendukung kemajuan ilmu pengetahuan dan penyuntingan jurnal.

Anda Mungkin Suka

CIMA Research Grants – Topic Specific Regional Calls

Please read the guidance notes before completing the application form.

If you need any assistance in completing this form, please contact CIMA research staff at research@aicpa-cima.com. Completed applications should be emailed to this address before the call closing date.

 

More info: https://www.aicpa-cima.com/resources/download/application-for-cima-research-grant-experienced-researchers

CALL FOR PAPER JOURNAL OF PRINCIPLES MANAGEMENT AND BUSSINES

Call for paper vol 2 no 2 (2023) Journal of Principles Management and Bussines 

More info: https://journal.scimadly.com/index.php/jpmb/annoucments

CALL FOR PAPERS Waraqat Vol. VIII No. 2 Juli - Desember 2023

Jurnal Waraqat kembali membuka kesempatan bagi Penulis, Dosen, dan Pemerhati Bidang Ilmu-Ilmu Keislaman untuk submit karya terbaiknya.

More info: https://waraqat.assunnah.ac.id/index.php/WRQ

3V: TIGA KARAKTERISTIK UTAMA BIG DATA

Big data adalah istilah yang digunakan untuk menggambarkan volume besar, keragaman, dan kecepatan tinggi data yang dihasilkan oleh berbagai sumber, seperti sensor, perangkat mobile, media sosial, transaksi bisnis, dan banyak lagi. Big data juga melibatkan data yang bervariasi dalam format dan jenis, termasuk teks, gambar, audio, dan video.

 

Ada tiga karakteristik utama dari big data yang dikenal sebagai "3V" yaitu:

1. Volume: Big data melibatkan jumlah data yang sangat besar. Ini bisa berarti terabytes, petabytes, atau bahkan exabytes data, yang jauh lebih besar dari apa yang dapat ditangani oleh sistem tradisional.

2. Velocity: Data yang dihasilkan dalam konteks big data sering kali datang dengan kecepatan tinggi. Contohnya adalah data streaming dari sensor IoT (Internet of Things) atau data dari media sosial yang terus-menerus diperbarui.

3. Variety: Big data mencakup berbagai jenis data, termasuk data terstruktur (misalnya, data dalam database relasional), data semi-terstruktur (misalnya, data dalam format XML atau JSON), dan data tak terstruktur (misalnya, teks dalam posting media sosial atau dokumen). Kombinasi dari berbagai jenis data ini menambah kompleksitas analisis big data.

 

Selain "3V," beberapa tambahan karakteristik telah ditambahkan ke konsep big data, seperti "Variability" (variabilitas dalam kecepatan dan jenis data), "Veracity" (keandalan dan keakuratan data), dan "Value" (kemampuan untuk mendapatkan wawasan berharga dari data tersebut).

Tujuan dari analisis big data adalah untuk mengidentifikasi pola, tren, dan wawasan yang dapat membantu organisasi dalam pengambilan keputusan yang lebih baik. Ini bisa digunakan di berbagai industri, termasuk bisnis, ilmu pengetahuan, kesehatan, dan banyak lagi. Solusi teknologi seperti sistem penyimpanan data yang skala-able, algoritma pemrosesan data yang cepat, dan teknik analisis data maju digunakan untuk mengatasi tantangan yang terkait dengan big data.