• Home
  • Berita
  • Mengenal Jebakan dalam Meta-Analisis: Variasi Kekuatan Bukti

Mengenal Jebakan dalam Meta-Analisis: Variasi Kekuatan Bukti

admin 1 Apr 2024

Dalam dunia penelitian, meta-analisis sering dianggap sebagai "mahkota" dari bukti ilmiah. Meta-analisis adalah alat yang kuat untuk mengintegrasikan temuan dari berbagai studi dan menyajikannya dalam kerangka yang koheren. Ini memungkinkan peneliti untuk melampaui batasan studi individual dan memperoleh pemahaman yang lebih komprehensif tentang topik yang dipelajari. Keunikan meta-analisis terletak pada kemampuannya untuk menghasilkan perkiraan yang lebih akurat dan stabil dari efek intervensi atau hubungan antara variabel, dibandingkan dengan studi tunggal atau kecil.

Apa Itu Kekuatan Bukti? Kekuatan bukti dalam konteks meta-analisis meliputi berbagai aspek, mulai dari kualitas metodologi studi individual hingga konsistensi hasil antar studi. Ini juga mencakup keandalan dan ketepatan temuan yang dihasilkan. Kualitas metodologi mengacu pada seberapa baik studi-studi itu dirancang dan dilaksanakan, sedangkan konsistensi hasil mengacu pada sejauh mana temuan dari berbagai studi bersifat seragam atau saling bertentangan. Kekuatan bukti ini menjadi landasan bagi interpretasi hasil meta-analisis dan keputusan yang dibuat berdasarkan temuan tersebut.

Mengapa Variasi Ini Menjadi Masalah? Variasi dalam kekuatan bukti dapat menimbulkan sejumlah masalah dalam interpretasi hasil meta-analisis. Ketidaksesuaian metodologi antar studi, terutama jika studi-studi dengan kualitas metodologi yang rendah dimasukkan dalam analisis, dapat menghasilkan temuan yang bias atau tidak dapat diandalkan. Selain itu, ketidak konsistenan hasil antar studi dapat membingungkan dan menyulitkan dalam menyimpulkan efek sebenarnya dari intervensi atau hubungan antara variabel.

Mengenal Jebakan Variasi Kekuatan Bukti:
1. Heterogenitas: Heterogenitas merujuk pada variasi dalam desain studi, populasi sampel, intervensi, dan hasil yang diukur di antara studi-studi yang diikutsertakan dalam meta-analisis. Ini dapat mengakibatkan ketidak konsistenan hasil antar studi dan membuat interpretasi yang sulit.
2. Bias Publikasi: Bias publikasi dapat terjadi ketika ada kecenderungan untuk menerbitkan studi-studi dengan hasil yang signifikan secara statistik, sementara studi-studi dengan hasil negatif atau tidak signifikan lebih jarang dipublikasikan. Hal ini dapat mengakibatkan overestimasi efek intervensi dalam meta-analisis.
3. Kualitas Metodologi: Kualitas metodologi yang bervariasi di antara studi-studi yang diinklusi dalam meta-analisis dapat mempengaruhi keandalan temuan secara keseluruhan. Studi dengan metodologi yang lemah mungkin memiliki risiko bias yang lebih tinggi dan oleh karena itu hasilnya mungkin kurang dapat diandalkan.

Strategi Menghadapi Jebakan:
- Menilai Kualitas Studi: Penting untuk melakukan penilaian menyeluruh terhadap kualitas metodologi studi-studi yang akan dimasukkan dalam meta-analisis. Ini dapat melibatkan penggunaan skala penilaian kualitas studi atau pemeriksaan peer-review.
- Menganalisis Heterogenitas: Teknik statistik yang tepat, seperti analisis heterogenitas atau meta-regresi, dapat digunakan untuk mengeksplorasi dan mengukur tingkat heterogenitas di antara studi-studi yang diikutsertakan.
- Sensitivitas Analisis: Melakukan analisis sensitivitas untuk menguji kestabilan hasil meta-analisis dengan mempertimbangkan pengecualian atau penambahan studi-studi tertentu. Ini membantu menilai seberapa sensitif temuan meta-analisis terhadap perubahan dalam komposisi studi.

Anda Mungkin Suka

CALL FOR PAPERS InCAF and NCAF

๐Ÿ“ขCALL FOR PAPERS๐Ÿ“ข

๐ŸŒŸ2nd International Conference on Accounting and Finance (InCAF)
๐ŸŒŸ7th National Conference on Accounting and Finance (NCAF)

๐Ÿ—“ Date: December 12-13, 2023
๐Ÿข Place: Yogyakarta, FBE UII Campus and Zoom ๐Ÿ’ป

๐Ÿ”†*THEME*๐Ÿ”†
"Strengthening Governance of Islamic Business and Finance Ecosystem"

๐ŸŽ“ *Main Organiser* ๐ŸŽ“
Master of Accounting Program, Universitas Islam Indonesia

๐Ÿ“ƒ PAPERS ๐Ÿ“ƒ 
English and Bahasa Indonesia

*๐Ÿ—“ IMPORTANT DATES ๐Ÿ—“*
๐Ÿ“Paper Submission Deadline: November 20, 2023
๐Ÿ“Announcement: November 25, 2023
๐Ÿ“Paper Revision Submission: November 30, 2023
๐Ÿ“Conference Date: December 12-13, 2023

*๐Ÿ“ PUBLICATIONS OPPORTUNITIES:*

Selected papers will undergo a review process and can be published at:

1. Jurnal Akuntansi dan Auditing Indonesia (Sinta 2, Index Copernicus, Proquest, RePEc)
2. Jurnal Siasat Bisnis (Sinta 2, Index Copernicus, ProQuest, DOAJ, RePEc, Google Scholar)
3. Jurnal Ekonomi & Keuangan Islam (Sinta2, Index Copernicus, ProQuest, RePEc, Google Scholar)
4. Journal of Contemporary Accounting (Sinta 3, Index Copernicus, Google Scholar, RePEc)
5. Asian Journal of Islamic Management (Sinta 4, DOAJ, Index Copernicus)
6. Online Proceeding with ISSN

๐Ÿ”— *IMPORTANT LINKS* ๐Ÿ”—:

Online Registration & Submission: https://accounting.uii.ac.id/incaf-ncaf/

โ˜Ž๏ธ Please contact us for any further information โ˜Ž๏ธ
Ms Tika/Ella
Phone (office) : +62 274 881546
WA/Cal : +62 813 2878 9856

It is highly appreciated if you could share this with colleagues and friends who might be interested. We thank you in advance for your cooperation.

Cara Kerja Teknologi Blockchain untuk Keamanan Peer Review

Teknologi blockchain digunakan dalam keamanan peer review untuk memberikan transparansi, keandalan, dan ketidakbisaan terhadap manipulasi data atau proses penilaian. Berikut adalah cara kerja teknologi blockchain dalam konteks keamanan peer review:

 

1. Distributed Ledger:

  • Blockchain menggunakan ledger terdistribusi yang dipegang oleh sejumlah besar peserta (node) dalam jaringan.
  • Informasi mengenai setiap tahapan proses peer review dan metrik transparansi disimpan secara terdesentralisasi di seluruh jaringan.

2. Integritas Data:

  • Setiap blok dalam rantai terkait dengan blok sebelumnya melalui fungsi kriptografis, menciptakan hubungan yang tidak dapat diubah antara setiap blok.
  • Ini memastikan integritas data, sehingga tidak mungkin memanipulasi atau mengganti blok-blok sebelumnya tanpa mengubah seluruh rantai.

3. Proses Identifikasi Terdesentralisasi:

  • Sistem menggunakan kunci kriptografis untuk memberikan identitas unik kepada setiap peserta di jaringan.
  • Identitas terdesentralisasi ini memastikan bahwa setiap peserta dapat diverifikasi tanpa kebutuhan otoritas pusat atau lembaga kepercayaan.

4. Smart Contracts:

  • Kontrak pintar (smart contracts) dapat diterapkan dalam blockchain untuk mengotomatisasi aspek-aspek tertentu dari proses peer review, seperti pengiriman artikel, penugasan penelaian, atau pemberian umpan balik.
  • Smart contracts memastikan eksekusi yang tepat dan transparan tanpa kebutuhan untuk perantara.

5. Keamanan dan Enkripsi:

  • Data yang disimpan dalam blok blockchain dienkripsi menggunakan kriptografi yang kuat.
  • Kunci pribadi dan publik digunakan untuk memberikan tingkat keamanan tambahan, memastikan bahwa hanya pihak yang berhak dapat mengakses informasi tertentu.

6. Token Ekonomi:

  • Penerapan token ekonomi atau kripto dapat memberikan insentif kepada penilai dan penulis untuk berpartisipasi dalam proses peer review.
  • Token dapat diberikan sebagai pengakuan atau kompensasi untuk kontribusi yang berharga dalam meningkatkan kualitas penelitian.

7. Transparansi dan Trackability:

  • Setiap entitas dalam jaringan memiliki visibilitas penuh terhadap setiap tindakan yang terjadi dalam proses peer review.
  • Ini menciptakan tingkat transparansi dan pelacakan yang tinggi, memungkinkan peninjauan dan audit yang lebih efektif.

8. Desentralisasi Keputusan:

  • Keputusan terkait penerimaan atau penolakan artikel dapat melibatkan seluruh jaringan, dengan mekanisme voting atau konsensus yang terdesentralisasi.
  • Ini memastikan keputusan diambil dengan melibatkan banyak pihak, mengurangi risiko bias atau manipulasi.

9. Timestamp:

  • Setiap blok dalam rantai memiliki timestamp yang terkait dengan waktu penciptaan. Ini memungkinkan untuk mengonfirmasi urutan kejadian dan mengatasi masalah sehubungan dengan waktu dan prioritas.

10. Ketidakbisaan dan Keamanan:

  • Dengan sifat terdesentralisasi dan enkripsi yang kuat, teknologi blockchain memberikan ketidakbisaan terhadap manipulasi dan serangan, menghadirkan lapisan keamanan tambahan dalam proses peer review.
  •  

Dengan memanfaatkan teknologi blockchain, keamanan dan transparansi dalam proses peer review dapat ditingkatkan, mengatasi beberapa tantangan yang mungkin terjadi dalam proses konvensional.

 

 


 

10th International Conference of Entrepreneurial Finance

Please find attached the call for papers of the 10th International Conference of Entrepreneurial Finance CIFEMA' 2023.

Conference Theme: : Islamic Economics and Finance in  a Changing Reality : Challenges and Development Prospects

The conference will be held on 22โ€“24 November 2023 at the National School of Trade and Management (Acronym ENCG), Ibn Zohr University, Agadir-Morocco.

Please feel free to forward this call to any researcher who may be interested.
Prof. Dr. Ahmed Chakir,
organizing committee

3V: TIGA KARAKTERISTIK UTAMA BIG DATA

Big data adalah istilah yang digunakan untuk menggambarkan volume besar, keragaman, dan kecepatan tinggi data yang dihasilkan oleh berbagai sumber, seperti sensor, perangkat mobile, media sosial, transaksi bisnis, dan banyak lagi. Big data juga melibatkan data yang bervariasi dalam format dan jenis, termasuk teks, gambar, audio, dan video.

 

Ada tiga karakteristik utama dari big data yang dikenal sebagai "3V" yaitu:

1. Volume: Big data melibatkan jumlah data yang sangat besar. Ini bisa berarti terabytes, petabytes, atau bahkan exabytes data, yang jauh lebih besar dari apa yang dapat ditangani oleh sistem tradisional.

2. Velocity: Data yang dihasilkan dalam konteks big data sering kali datang dengan kecepatan tinggi. Contohnya adalah data streaming dari sensor IoT (Internet of Things) atau data dari media sosial yang terus-menerus diperbarui.

3. Variety: Big data mencakup berbagai jenis data, termasuk data terstruktur (misalnya, data dalam database relasional), data semi-terstruktur (misalnya, data dalam format XML atau JSON), dan data tak terstruktur (misalnya, teks dalam posting media sosial atau dokumen). Kombinasi dari berbagai jenis data ini menambah kompleksitas analisis big data.

 

Selain "3V," beberapa tambahan karakteristik telah ditambahkan ke konsep big data, seperti "Variability" (variabilitas dalam kecepatan dan jenis data), "Veracity" (keandalan dan keakuratan data), dan "Value" (kemampuan untuk mendapatkan wawasan berharga dari data tersebut).

Tujuan dari analisis big data adalah untuk mengidentifikasi pola, tren, dan wawasan yang dapat membantu organisasi dalam pengambilan keputusan yang lebih baik. Ini bisa digunakan di berbagai industri, termasuk bisnis, ilmu pengetahuan, kesehatan, dan banyak lagi. Solusi teknologi seperti sistem penyimpanan data yang skala-able, algoritma pemrosesan data yang cepat, dan teknik analisis data maju digunakan untuk mengatasi tantangan yang terkait dengan big data.