• Home
  • Berita
  • Menaklukkan Waktu: Mengenal Lebih Dekat dengan Kekuatan Analisis Survival

Menaklukkan Waktu: Mengenal Lebih Dekat dengan Kekuatan Analisis Survival

admin 22 Apr 2024

Penelitian survival, atau yang dikenal juga dengan analisis survival, merupakan metode statistik yang digunakan untuk menganalisis data waktu-hidup. Metode ini sangat penting dalam berbagai bidang, termasuk kedokteran, biologi, insuransi, dan ekonomi, untuk memprediksi waktu terjadinya suatu peristiwa, seperti kematian, kegagalan mesin, atau lainnya. Pemahaman tentang penelitian survival tidak hanya penting bagi para peneliti tetapi juga bagi publik umum, karena aplikasinya yang luas dan penting dalam kehidupan sehari-hari.

Apa Itu Penelitian Survival?

Secara sederhana, penelitian survival mengamati waktu mulai dari suatu titik awal hingga terjadinya suatu peristiwa tertentu. Dalam konteks kesehatan, peristiwa tersebut bisa berupa kematian pasien atau kekambuhan penyakit, sedangkan dalam teknik, itu bisa jadi kegagalan suatu komponen mesin. Yang membuat analisis ini unik adalah kemampuannya dalam menangani data yang 'disensor'. Data disensor terjadi ketika waktu peristiwa tidak diketahui secara pasti, hanya diketahui telah melebihi durasi pengamatan.

Metode dalam Penelitian Survival

Dalam analisis survival, terdapat beberapa alat ukur penting yang digunakan untuk mengestimasi dan memahami waktu sampai terjadinya suatu peristiwa. Berikut ini adalah beberapa alat ukur utama yang sering digunakan dalam penelitian survival:

1. Fungsi Survival: Alat ukur ini mengestimasi probabilitas bahwa subjek tertentu akan bertahan lebih lama dari waktu tertentu. Fungsi survival, S(t), biasanya didefinisikan sebagai probabilitas bahwa waktu kejadian T lebih besar dari waktu t, S(t) = P(T > t).

2. Fungsi Hazard: Mengukur risiko instantan kejadian peristiwa pada waktu t, asalkan subjek telah bertahan hingga waktu t tanpa kejadian. Fungsi hazard, h(t), sering digambarkan sebagai limit probabilitas kejadian peristiwa dalam interval waktu yang sangat kecil, dibagi dengan panjang interval tersebut, kondisional pada tidak adanya peristiwa hingga waktu t.

3. Kurva Kaplan-Meier: Metode non-parametrik untuk mengestimasi fungsi survival dari data yang mungkin termasuk censoring. Kurva Kaplan-Meier sangat berguna dalam menampilkan data survival dan memungkinkan visualisasi estimasi survival pada setiap titik waktu.

4. Model Cox Proportional Hazards: Ini adalah model semi-parametrik yang digunakan untuk menilai simultan efek dari beberapa faktor risiko pada waktu kejadian. Model ini mengasumsikan bahwa efek dari variabel prediktor terhadap risiko kejadian adalah konstan sepanjang waktu dan berfokus pada estimasi proporsi risiko (hazards) yang berhubungan dengan variabel prediktor.

5. Log-Rank Test: Uji statistik yang digunakan untuk membandingkan kurva survival antara dua atau lebih kelompok. Ini adalah metode non-parametrik untuk menguji hipotesis nol bahwa tidak ada perbedaan dalam fungsi survival antar kelompok yang dibandingkan.

6. Analisis Regresi Parametrik: Melibatkan model-model seperti model Weibull, eksponensial, atau log-normal yang mengasumsikan distribusi statistik tertentu untuk data waktu-hidup. Model-model ini berguna dalam situasi di mana asumsi proporsional hazards dari model Cox tidak dipenuhi.

7. Cumulative Incidence Function: Dalam konteks kompetisi risiko, fungsi ini digunakan untuk mengestimasi probabilitas kejadian peristiwa tertentu seiring waktu, dengan mempertimbangkan adanya risiko kompetitif yang bisa mencegah terjadinya peristiwa yang diinginkan.

Pemilihan alat ukur yang tepat dalam analisis survival sangat bergantung pada jenis data, tujuan analisis, dan asumsi yang dibuat mengenai data tersebut. Kesesuaian model dan teknik statistik ini mempengaruhi interpretasi dan validitas kesimpulan yang dihasilkan dari analisis survival.

Aplikasi Penelitian Survival di Bidang Ekonomi dan Keuangan Syariah

Analisis survival dalam konteks ekonomi dan keuangan syariah memperlihatkan aplikasi unik dan penting dari metodologi ini, terutama dalam menghadapi tantangan dan peluang yang unik di sektor ini. Dalam ekonomi syariah, prinsip-prinsip keadilan dan penghindaran riba (bunga) menuntut pendekatan yang berbeda dari keuangan konvensional, dan analisis survival bisa memberikan wawasan yang mendalam dalam berbagai aspek.

1. Kredit dan Pembiayaan: Dalam keuangan syariah, instrumen pembiayaan seperti Murabahah (jual beli), Ijarah (sewa), dan Mudarabah (kerjasama investasi) memiliki struktur risiko yang berbeda dari pinjaman konvensional. Analisis survival dapat digunakan untuk memprediksi 'waktu hingga kegagalan' dalam kredit, yaitu ketika debitur gagal membayar sesuai dengan kesepakatan. Hal ini membantu lembaga keuangan syariah dalam menilai risiko dan menetapkan syarat pembiayaan yang sesuai dengan prinsip syariah.

2. Durasi Produk Keuangan: Produk keuangan syariah, seperti sukuk (obligasi syariah), sering kali memiliki jangka waktu yang terikat dengan proyek tertentu atau aset produktif. Analisis survival dapat membantu dalam mengestimasi masa berlakunya produk keuangan ini, yang penting untuk manajemen portofolio dan strategi investasi.

3. Keberlanjutan Bisnis: Dalam ekonomi syariah, bisnis harus tidak hanya menguntungkan tetapi juga harus memenuhi kriteria keadilan sosial dan keberlanjutan lingkungan. Analisis survival dapat digunakan untuk memprediksi keberlangsungan usaha yang mematuhi prinsip syariah, membantu investor dan regulator dalam membuat keputusan yang berinformasi.

Penerapan Analisis Survival dalam Keuangan Syariah

Studi Kasus: Analisis Durasi Sukuk. Misalnya, sukuk sering digunakan untuk mendanai proyek infrastruktur atau real estate. Analisis survival dapat digunakan untuk mengestimasi durasi sukuk ini, memperhitungkan variabel seperti tingkat pengembalian, risiko proyek, dan kondisi pasar. Hal ini membantu dalam menyusun sukuk dengan struktur yang lebih tahan terhadap volatilitas pasar dan risiko proyek.

Studi Kasus: Risiko Kredit pada Pembiayaan Murabahah. Pembiayaan Murabahah adalah metode pembiayaan populer dalam keuangan syariah, di mana bank membeli barang dan menjualnya kembali kepada pelanggan dengan margin keuntungan yang disepakati. Menggunakan analisis survival untuk memodelkan waktu hingga kegagalan pembayaran bisa mengungkap pola yang mempengaruhi risiko kredit, seperti karakteristik debitur atau kondisi ekonomi.

Analisis survival menawarkan alat yang kuat dalam mengatasi beberapa tantangan unik yang dihadapi oleh ekonomi dan keuangan syariah. Dengan memahami dan memprediksi durasi dan risiko dari berbagai instrumen dan kegiatan bisnis dalam ekonomi syariah, para pelaku pasar dapat membuat keputusan yang lebih tepat dan efektif, sejalan dengan prinsip-prinsip syariah yang mendorong keadilan sosial dan keberlanjutan ekonomi.

Anda Mungkin Suka

CHANSE International Humanities and Social Sciences Research Programme

Closing Date: 21/09/2023

Funding for collaborative, transnational research projects on set themes of critical importance to the humanities and social sciences.

CHANSE (Collaboration of Humanities and Social Sciences in Europe) is a joint initiative of 27 research funding organisations from 24 countries across Europe. The CHANSE programme has been co-created by HERA (Humanities in the European Research Area) and NORFACE (New Opportunities for Research Funding Agency Cooperation in Europe) networks, with co-funding from the European Union Horizon 2020 programme, to support research, knowledge exchange and the promotion of best practice in the humanities and social sciences across Europe.

 

More info: https://www.myresearchconnect.com/chanse-international-humanities-and-social-sciences-research-programme/

Era Digital dalam Dunia Jurnal: Transformasi, Tantangan, dan Peluang

Transformasi Dunia Jurnal dalam Era Digital

Proses Penerbitan Digital: Adopsi platform digital telah mengubah fundamental cara jurnal diterbitkan, mulai dari pengajuan artikel hingga distribusi online, mempercepat proses secara signifikan.

Akses Terbuka: Gerakan akses terbuka telah membuka pintu bagi peneliti di seluruh dunia, memastikan bahwa pengetahuan ilmiah dapat diakses secara bebas, meningkatkan visibilitas dan dampak artikel.

Peer Review Berbantuan Teknologi: Pemanfaatan teknologi dalam proses peer review telah meningkatkan efisiensi dan kualitas penelaahan sejawat, dengan platform daring dan alat analisis otomatis.

 

Tantangan Dunia Jurnal dalam Era Digital

Etika dan Plagiarisme: Kemudahan akses digital juga membawa tantangan etika baru, seperti peningkatan kasus plagiarisme dan penulis ganda, menuntut solusi yang efektif.

Keamanan Data: Peneliti dan penerbit perlu berurusan dengan tantangan keamanan data, terutama dalam hal melindungi hak cipta dan mencegah akses ilegal atau manipulasi data.

Fluktuasi Kualitas: Meskipun ada peningkatan akses, ada risiko fluktuasi kualitas akibat volume besar artikel yang diterbitkan secara daring tanpa kontrol kualitas yang memadai.

 

Peluang Dunia Jurnal dalam Era Digital

Kolaborasi Global: Platform digital memungkinkan kolaborasi penelitian global tanpa hambatan geografis, membuka peluang untuk proyek bersama dan pertukaran pengetahuan.

Analisis Data dan Metrik Kinerja: Teknologi membantu menggali potensi data besar untuk menganalisis tren, mendukung pengambilan keputusan, dan memberikan metrik kinerja yang lebih canggih.

Inovasi dalam Metode Penelitian: Kemajuan teknologi merangsang inovasi dalam metode penelitian, termasuk penggunaan kecerdasan buatan dan analisis data yang lebih kompleks.

Meningkatkan Literasi Jurnal: Platform digital dapat digunakan untuk meningkatkan literasi jurnal, dengan penyediaan sumber daya dan pelatihan daring untuk penulis, pembaca, dan pemeriksa sejawat.

Kesimpulan

Dalam era digital, dunia jurnal mengalami transformasi mendalam dengan menyajikan peluang besar dan tantangan yang memerlukan solusi kreatif. Peningkatan akses, kolaborasi global, dan inovasi teknologi memperkaya ekosistem jurnalisme ilmiah, sementara etika dan keamanan data memerlukan perhatian serius untuk memastikan integritas dan kepercayaan dalam penelitian ilmiah.

ULASAN SINGKAT METODE KUANTITATIF

Metode kuantitatif adalah pendekatan penelitian yang mengumpulkan data berupa angka dan melakukan analisis statistik untuk menghasilkan informasi yang objektif dan dapat diukur. Berikut adalah beberapa poin penting tentang metode kuantitatif secara singkat:

 

Tujuan: Metode ini digunakan untuk mengukur hubungan antara variabel, mengidentifikasi pola, dan membuat generalisasi berdasarkan data numerik.

Desain Penelitian: Penelitian kuantitatif seringkali melibatkan desain eksperimen atau survei. Data dikumpulkan melalui instrumen seperti kuesioner, tes, atau observasi terstruktur.

Sampling: Penelitian kuantitatif sering menggunakan sampel yang mewakili populasi yang lebih besar. Sampling yang baik sangat penting untuk mendapatkan hasil yang dapat dipercaya.

Analisis Data: Data dikumpulkan dalam bentuk angka dan kemudian dianalisis menggunakan teknik statistik seperti regresi, uji hipotesis, atau analisis varian untuk mengidentifikasi pola atau hubungan yang signifikan.

Objektivitas: Metode ini berusaha untuk menghindari pengaruh peneliti dalam pengumpulan dan analisis data, sehingga hasilnya lebih obyektif.

Replikasi: Penelitian kuantitatif seringkali mendorong replikasi atau pengulangan studi oleh peneliti lain untuk memeriksa keabsahan temuan.

Hasil: Hasil dari penelitian kuantitatif biasanya disajikan dalam bentuk angka, tabel, grafik, atau statistik deskriptif.

Keuntungan: Metode kuantitatif memungkinkan generalisasi yang lebih kuat, memungkinkan pengujian hipotesis secara sistematis, dan dapat memberikan hasil yang lebih obyektif dan dapat diukur.

Keterbatasan: Metode ini cenderung mengabaikan konteks dan pemahaman mendalam tentang fenomena yang diteliti, serta terbatas dalam menangani aspek kualitatif atau nuansamenjadi objektif.

Contoh: Misalnya, sebuah penelitian kuantitatif dapat digunakan untuk mengukur pengaruh faktor-faktor seperti pendidikan, pengalaman kerja, dan usia terhadap tingkat penghasilan dalam sebuah populasi.

 

Metode kuantitatif adalah salah satu pendekatan yang populer dalam ilmu sosial, ilmu alam, dan berbagai bidang penelitian lainnya untuk mengumpulkan dan menganalisis data dengan pendekatan yang lebih terstruktur dan menghasilkan informasi yang dapat diukur secara empiris.

Efektivitas Analisis Sentimen Sejawat

Analisis sentimen sejawat adalah pendekatan yang menggunakan teknik pemrosesan bahasa alami (NLP) dan analisis sentimen untuk mengevaluasi respons emosional atau opini dari para penilai terhadap suatu karya ilmiah, seperti artikel jurnal. Berikut adalah beberapa cara di mana analisis sentimen sejawat dapat meningkatkan efektivitas proses penelaahan sejawat:

 

>Identifikasi Respon Emosional: Analisis sentimen dapat membantu mengidentifikasi respon emosional penilai terhadap berbagai aspek dari artikel, mulai dari bahasa yang digunakan hingga kesan keseluruhan. Ini memberikan wawasan tambahan selain penilaian teknis.

 

>Penilaian Subjektivitas: Analisis sentimen dapat membantu mengukur tingkat subjektivitas dalam penilaian. Hal ini berguna untuk mengidentifikasi bagian artikel yang mungkin menjadi subjektif dan dapat menimbulkan perbedaan pendapat di antara penilai.

 

>Pemahaman Umpan Balik Kualitatif: Analisis sentimen sejawat dapat membantu menggali umpan balik kualitatif penilai, membantu penyunting dan penulis untuk memahami lebih baik bagaimana pesan atau metodologi mereka diterima.

 

>Identifikasi Aspek Positif dan Negatif: Analisis sentimen dapat membedakan aspek-aspek positif dan negatif dalam penilaian, memberikan gambaran lebih rinci tentang kekuatan dan kelemahan artikel.

 

>Tren Sentimen dalam Sejawat: Dengan melacak tren sentimen sejawat dari beberapa penilaian, analisis sentimen dapat membantu mengidentifikasi apakah ada konsensus positif atau negatif tentang suatu artikel di antara para penilai.

 

>Mendeteksi Tingkat Kepuasan Penilai: Melalui analisis sentimen, dapat dilihat apakah penilai merasa puas atau tidak puas dengan isi artikel. Hal ini dapat memberikan masukan berharga untuk meningkatkan kualitas dan kejelasan tulisan.

 

>Perbaikan Proses Penelaahan: Analisis sentimen dapat membantu penyunting dan penerbit untuk mengevaluasi efektivitas proses penelaahan sejawat, dengan mengidentifikasi area yang mungkin memerlukan perbaikan atau perhatian lebih lanjut.

 

>Menemukan Sentimen Tertentu dalam Domain Khusus: Analisis sentimen yang dioptimalkan untuk domain khusus (seperti ilmu pengetahuan, teknologi, atau kedokteran) dapat memberikan hasil yang lebih akurat dalam konteks tersebut.

 

>Meningkatkan Konsistensi Penilaian: Dengan memanfaatkan analisis sentimen, dapat menciptakan alat pendukung yang membantu memastikan konsistensi dalam penilaian sejawat, terutama ketika menangani jumlah artikel yang besar.

 

>Dukungan Keputusan: Analisis sentimen dapat membantu penyunting dalam mengambil keputusan yang lebih terinformasi terkait penerimaan atau penolakan suatu artikel, dengan memperhatikan tanggapan emosional dan opini penilai.

 

Dengan demikian, analisis sentimen sejawat dapat memberikan dimensi tambahan dalam proses penelaahan sejawat, membantu meningkatkan efektivitas dan memberikan pemahaman yang lebih mendalam tentang tanggapan para penilai terhadap karya ilmiah.